Citation: Yilun Li,  Yaofeng Yuan,  Keyin Ye. Cage-Type Stereoelectronic Effects of Perfluorocubane[J]. University Chemistry, ;2023, 38(11): 126-130. doi: 10.3866/PKU.DXHX202304025 shu

Cage-Type Stereoelectronic Effects of Perfluorocubane

  • Corresponding author: Yaofeng Yuan,  Keyin Ye, 
  • Received Date: 7 April 2023

  • As an essential component of fundamental organic chemistry theory, stereoelectronic effects, including the common gauche and anomeric effects, have been intensively investigated and discussed in undergraduate courses. Nevertheless, with the precise prediction and successful synthesis of perfluorocubane, a new cage-type stereoelectronic effect has attracted considerable attention from chemists. Herein, we briefly review the development of stereoelectronic effects, including their wide-ranging applications in organic chemistry. In particular, we highlight recent investigations on perfluorocubane synthesis and discuss the interesting cage-type stereoelectronic effects. The positive interplay between the scientific frontiers and the organic chemistry course will significantly influence the global perspective of students by expanding their knowledge of organic chemistry, and the fundamental concepts and advanced applications of stereoelectronic effects.

    1. [1]

      Alabugin, I. V. Stereoelectronic Effects:A Bridge Between Structure and Reactivity; John Wiley & Sons, Ltd.:New York, NY, USA, 2016.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Edward, J. T. Chem. Ind. 1955, 3, 1102.

    6. [6]

    7. [7]

    8. [8]

      Pophristic, V.; Goodman, L. Nature 2001, 411, 565.

    9. [9]

      Weinhold, F. Nature 2001, 411, 539.

    10. [10]

      Alabugin, I. V.; Gilmore, K. M.; Peterson, P. W. Comput. Mol. Sci. 2011, 1, 109.

    11. [11]

      Irikura, K. K. J. Phys. Chem. A 2008, 112, 983.

    12. [12]

      Kato, T.; Yamabe, T. J. Chem. Phys. 2004, 120, 1006.

    13. [13]

      Sugiyama, M.; Akiyama, M.; Yonezawa, M.; Komaguchi, K.; Higashi, K.; Nozaki, K.; Okazoe, T. Science 2022, 377, 756.

    14. [14]

      Berski, S.; Gordon, A. J.; Latajka, Z.; J. Phys. Chem. A 2014, 118, 4147.

    15. [15]

      Bent, H. A. Chem. Rev. 1961, 61, 275.

    16. [16]

      Bauzá, A.; Mooibroek, T. J.; Frontera, A. Phys. Chem. Chem. Phys. 2014, 16, 19192.

    17. [17]

      Dai, X.- L.; Schulz, D. L.; Braun, C. W.; Ugrinov, A.; Boudjouk, P. Organometallics 2010, 29, 2203.

    18. [18]

      Dai, X.- L.; Choi, S.-B.; Braun, C. W.; Vaidya, P.; Kilina, S.; Ugrinov, A.; Schulz, D. L.; Boudjouk, P. Inorg. Chem. 2011, 50, 4047.

    1. [1]

      Alabugin, I. V. Stereoelectronic Effects:A Bridge Between Structure and Reactivity; John Wiley & Sons, Ltd.:New York, NY, USA, 2016.

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      Edward, J. T. Chem. Ind. 1955, 3, 1102.

    6. [6]

    7. [7]

    8. [8]

      Pophristic, V.; Goodman, L. Nature 2001, 411, 565.

    9. [9]

      Weinhold, F. Nature 2001, 411, 539.

    10. [10]

      Alabugin, I. V.; Gilmore, K. M.; Peterson, P. W. Comput. Mol. Sci. 2011, 1, 109.

    11. [11]

      Irikura, K. K. J. Phys. Chem. A 2008, 112, 983.

    12. [12]

      Kato, T.; Yamabe, T. J. Chem. Phys. 2004, 120, 1006.

    13. [13]

      Sugiyama, M.; Akiyama, M.; Yonezawa, M.; Komaguchi, K.; Higashi, K.; Nozaki, K.; Okazoe, T. Science 2022, 377, 756.

    14. [14]

      Berski, S.; Gordon, A. J.; Latajka, Z.; J. Phys. Chem. A 2014, 118, 4147.

    15. [15]

      Bent, H. A. Chem. Rev. 1961, 61, 275.

    16. [16]

      Bauzá, A.; Mooibroek, T. J.; Frontera, A. Phys. Chem. Chem. Phys. 2014, 16, 19192.

    17. [17]

      Dai, X.- L.; Schulz, D. L.; Braun, C. W.; Ugrinov, A.; Boudjouk, P. Organometallics 2010, 29, 2203.

    18. [18]

      Dai, X.- L.; Choi, S.-B.; Braun, C. W.; Vaidya, P.; Kilina, S.; Ugrinov, A.; Schulz, D. L.; Boudjouk, P. Inorg. Chem. 2011, 50, 4047.

  • 加载中
    1. [1]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    4. [4]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    5. [5]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    6. [6]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    11. [11]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    12. [12]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    15. [15]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(3)
  • Abstract views(840)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return