Citation: Jiaxi Xu,  Yuan Ma. Mechanisms and Stereoselectivities in the Reactions of Bromine and Different Substituted C=C Bonds[J]. University Chemistry, ;2023, 38(2): 109-115. doi: 10.3866/PKU.DXHX202204052 shu

Mechanisms and Stereoselectivities in the Reactions of Bromine and Different Substituted C=C Bonds

  • Reaction of bromine and the C=C double bond is one of common elementary reactions in organic chemistry. Bromine and alkenes undergo an electrophilic addition. Aliphatic alkenes undergo formation of three-membered cyclic bromonium intermediates and subsequent ring-opening mechanism, affording stereospecific trans-dibromoadducts, while the three-membered cyclic bromonium intermediates of arylolefins favor to dissociate their benzylic C―Br bond due to aryl stabilizing the generated carbocations, producing a mixture of cis- and trans-dibromoadducts. However, bromine and enols or enolates generated from ketones or carboxylic halides undergo electrophilic substitutions. Bromine does not generate the corresponding three-membered cyclic bromonium intermediates with their C=C bond in the reactions. Similarly, the reactions of viny ethers and enamines with bromine do not undergo the three-membered cyclic bromonium intermediates, either, generating nonstereospecific adducts and substituted products, respectively. This article rationally explains the mechanistic and stereoselective differentiations between the reactions of bromine and these two classes of reactants with reactive molecular orbitals in the elementary reaction, and summarizes the identification method on the reaction mechanism and stereoselectivity of the reactions between bromine and different C=C bonds, hoping to be convenient for teaching and understanding.

    1. [1]

      Volhardt, K. P. C.; Schore, N. E. Organic Chemistry, 8th ed.; McMilan Education:New York, NY, USA, 2018; pp. 538-540, 868-869, 942.

    2. [2]

      , 528-529.

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      Sheng, D. N.; Xu, J. X. Org. Biomol. Chem. 2022, 20, 4976.

    8. [8]

      Rolston, J. H.; Yates, K. J. Am. Chem. Soc. 1969, 91, 1469.

    9. [9]

      Berti, G.; Catelani, G.; Monti, L.; Ventresca, G. Tetrahedron 1986, 42, 3973.

    10. [10]

      Boschi, A.; Chiappe, C.; De Rubertis, A.; Ruasse, M. F. J. Org. Chem. 2000, 65, 8470.

    11. [11]

      Carlson, R.; Rappe, C. Acta Chem. Scand. 1974, B28, 1060.

    1. [1]

      Volhardt, K. P. C.; Schore, N. E. Organic Chemistry, 8th ed.; McMilan Education:New York, NY, USA, 2018; pp. 538-540, 868-869, 942.

    2. [2]

      , 528-529.

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

      Sheng, D. N.; Xu, J. X. Org. Biomol. Chem. 2022, 20, 4976.

    8. [8]

      Rolston, J. H.; Yates, K. J. Am. Chem. Soc. 1969, 91, 1469.

    9. [9]

      Berti, G.; Catelani, G.; Monti, L.; Ventresca, G. Tetrahedron 1986, 42, 3973.

    10. [10]

      Boschi, A.; Chiappe, C.; De Rubertis, A.; Ruasse, M. F. J. Org. Chem. 2000, 65, 8470.

    11. [11]

      Carlson, R.; Rappe, C. Acta Chem. Scand. 1974, B28, 1060.

  • 加载中
    1. [1]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    2. [2]

      Jinghan Xu Yang Wang Donghui Wei . Drawing Cross-Sectional Contour Maps of π Molecular Orbitals. University Chemistry, 2025, 40(3): 23-29. doi: 10.12461/PKU.DXHX202403023

    3. [3]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    19. [19]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    20. [20]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

Metrics
  • PDF Downloads(0)
  • Abstract views(2853)
  • HTML views(935)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return