Citation: Xiangru Meng,  Gang Li. Synthesis of Diacetylferrocene and Analysis of Photo-ligand Exchange Reaction Product between Diacetylferrocene and 1,10-Phenanthroline: A New and Interesting Comprehensive Chemistry Experiment[J]. University Chemistry, ;2021, 36(6): 200806. doi: 10.3866/PKU.DXHX202008065 shu

Synthesis of Diacetylferrocene and Analysis of Photo-ligand Exchange Reaction Product between Diacetylferrocene and 1,10-Phenanthroline: A New and Interesting Comprehensive Chemistry Experiment

  • 1,1-diacetylferrocene (DAF) was synthesized through Friedel-Crafts acylation reaction by using ferrocene and acetylchloride as starting materials. This process involves basic laboratory skills, such as low temperature control, anhydrous and anoxic operation, extraction, vacuum distillation and recrystallization. The photo-ligand exchange reaction between DAF and 1,10-phenanthroline (phen) was carried out under visible light irradiation due to the photosensitivity of DAF and the strong chelating ability of phen. Phen substituted acetyl cyclopentadiene ligand, and produced complex[Fe(phen)3](C5H4COCH3)2·CH3CN·2H2O. The composition of the photoreaction product was determined by means of powder X-ray diffraction, elemental analysis, infrared spectrum and 1H NMR spectra. This comprehensive chemistry experiment is appropriate in difficulty, and the testing methods are diversified, which enables junior or senior undergraduates to complete a basic scientific research training process independently on the basis of comprehensive laboratory (I) and basic inorganic, analytical and organic chemistry laboratories.

    1. [1]

      Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039.

    2. [2]

      Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. 1952, 74 (8), 2125.

    3. [3]

      Fisher, E. O.; Pfab, W. Z. Naturforsch. 1952, 7b, 377.

    4. [4]

      Rahimi, M.; Chermette, H.; Jamehbozorgi, S.; Ghiasi, R.; Kalhor, M. P. Russ. J. Phys. Chem. 2019, A93 (9), 1747.

    5. [5]

      Miller, J. S. Chem. Rev. 1988, 88 (1), 201.

    6. [6]

      Foo, K.; Sella, E.; Thomé, I.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136 (14), 5279.

    7. [7]

    8. [8]

      Roman, E.; Dabard, R.; Moinet, C.; Astruc, D. Tetrahedron Lett. 1979, 16, 1433.

    9. [9]

      Astruc, D. Tetrahedron 1983, 39 (24), 4027.

    10. [10]

      Sutherland, R. G.; Iobal, M.; Piórko, A. J. Organomet. Chem. 1986, 302 (3), 307.

    11. [11]

      Nesmeyanov, A. N.; Vol'kenau, N. A.; Bolesova, I. N. Tetrahedron Lett. 1963, 94 (25), 1725.

    12. [12]

      Astruc, D. Tetrahedron Lett. 1973, 4 (36), 3437.

    13. [13]

      Che, D. J.; Li, G.; Du, B. S.; Zhang, Z.; Li, Y. H. Inorg. Chim. Acta 1997, 261 (2), 121.

    14. [14]

    15. [15]

      Xia, X.; Yu, H.; Wang, L.; Deng, Z.; Shea, K. J.; Abdina, Z. U. Eur. Polym. J. 2018, 100, 103.

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

      Okuyama, T.; Ikenouchi, Y.; Fueno, T. J. Am. Chem. Soc. 1978, 100 (19), 6162.

    1. [1]

      Kealy, T. J.; Pauson, P. L. Nature 1951, 168, 1039.

    2. [2]

      Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. 1952, 74 (8), 2125.

    3. [3]

      Fisher, E. O.; Pfab, W. Z. Naturforsch. 1952, 7b, 377.

    4. [4]

      Rahimi, M.; Chermette, H.; Jamehbozorgi, S.; Ghiasi, R.; Kalhor, M. P. Russ. J. Phys. Chem. 2019, A93 (9), 1747.

    5. [5]

      Miller, J. S. Chem. Rev. 1988, 88 (1), 201.

    6. [6]

      Foo, K.; Sella, E.; Thomé, I.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136 (14), 5279.

    7. [7]

    8. [8]

      Roman, E.; Dabard, R.; Moinet, C.; Astruc, D. Tetrahedron Lett. 1979, 16, 1433.

    9. [9]

      Astruc, D. Tetrahedron 1983, 39 (24), 4027.

    10. [10]

      Sutherland, R. G.; Iobal, M.; Piórko, A. J. Organomet. Chem. 1986, 302 (3), 307.

    11. [11]

      Nesmeyanov, A. N.; Vol'kenau, N. A.; Bolesova, I. N. Tetrahedron Lett. 1963, 94 (25), 1725.

    12. [12]

      Astruc, D. Tetrahedron Lett. 1973, 4 (36), 3437.

    13. [13]

      Che, D. J.; Li, G.; Du, B. S.; Zhang, Z.; Li, Y. H. Inorg. Chim. Acta 1997, 261 (2), 121.

    14. [14]

    15. [15]

      Xia, X.; Yu, H.; Wang, L.; Deng, Z.; Shea, K. J.; Abdina, Z. U. Eur. Polym. J. 2018, 100, 103.

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

      Okuyama, T.; Ikenouchi, Y.; Fueno, T. J. Am. Chem. Soc. 1978, 100 (19), 6162.

  • 加载中
    1. [1]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    2. [2]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    3. [3]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    4. [4]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    7. [7]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    8. [8]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    11. [11]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    12. [12]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    13. [13]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

Metrics
  • PDF Downloads(4)
  • Abstract views(884)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return