Citation: LIU Yulan,  CHEN Yali,  XIAO Xiaohua,  XIA Ling,  LI Gongke. Research progress of electrically-driven force based online rapid separation and enrichment techniques[J]. Chinese Journal of Chromatography, ;2020, 38(10): 1197-1205. doi: 10.3724/SP.J.1123.2020.07026 shu

Research progress of electrically-driven force based online rapid separation and enrichment techniques

  • Corresponding author: XIA Ling,  LI Gongke, 
  • Received Date: 27 July 2020

    Fund Project: National Natural Science Foundation of China (Nos. 21804147, 21976213, 21675178)

  • Sample preparation is a critical step in complex sample analysis, which enables analyte isolation and preconcentration from a complex matrix. Therefore, sample preparation is an effective approach to enhance the sensitivity, selectivity, and accuracy of the analytical method. However, the transfer of target analytes from a random state in the original sample matrix to a highly ordered pre-analysis state involves an entropy reduction process that cannot occur spontaneously. Therefore, sample preparation is always a time-consuming, labor-intensive, and error-prone process. Introducing additional energy or reducing the entropy of the system can enhance the separation and enrichment effects as well as accelerate sample preparation. The introduction of an electric field into an online sample preparation system can not only introduce additional energy into the system, but also drive the directional migration of the sample among the separation, enrichment, and detection processes, ensuring that the entropy reduction progresses smoothly. These advantages of electrically-driven force based online separation and enrichment techniques make them effective for accelerating sample preparation. Typically, there are four acceleration strategies in electrically-driven force based online separation and enrichment techniques: (1) the additional energy of the electric field is added into the system to accelerate mass transfer and energy exchange; (2) electrically-driven flows, including electroosmotic flow and electrophoretic flow, are applied to drive the directional migration of the sample among the separation, enrichment, and detection processes, ensuring that sample preparation and analysis are executed smoothly; (3) the online integration technique is applied to enhance the automaticity of the entire sample preparation and analysis processes, and reduce errors from manual operation; (4) device miniaturization or size reduction methods such as microextraction are applied to enhance the sample preparation efficiency and reduce the time consumed. This review summarizes the progress in electrically-driven force based online rapid separation and enrichment techniques in the last ten years. In this specific research area, more than one hundred research papers are published each year, and can be classified into three types based on the electrically-driven force based online rapid separation and enrichment techniques considered: capillary, microchip, and membrane extraction. Among these, over 50% of the studies focused on electrically-driven capillary force based online rapid separation and enrichment techniques. By applying a high-voltage electric field at the two ends of a capillary, charged species in the capillary can migrate along the direction of the medium. This makes the electrically-driven capillary technique not only fast, highly efficient, and low-cost, but also effective for rapid sample preparation. Typically, two modes of electrically-driven capillary force based online rapid separation and enrichment techniques are employed: online capillary electrophoretic separation and enrichment, and online microextraction-capillary electrophoresis. Device miniaturization from the capillary to microchip through microelectronic mechanical systems and microfluidics enables small-amount sample preparation and analysis, and is also advantageous due to being rapid and efficient, as well as low energy- and sample-consuming. The specific easy-integration trait of microchip devices enables the online integration of multi-step sample preparation and analysis. On the other hand, the controllable electrically-driven force can be used for both, directional flow transfer between different functional units in the microchip as well as for dynamic control of the electrically fluid pump and valve. Online microchip electrophoretic separation and enrichment, and online microextraction-microchip electrophoresis, are two common modes of microchip electrically-driven force based online rapid separation and enrichment techniques. In electrically-driven membrane extraction online separation and enrichment techniques, a supporting liquid membrane is used to eliminate the matrix interference, enabling large-scale real sample application. These techniques have received increasing attention in the research area of electrically-driven force based online separation and enrichment. Overall, rapid separation and enrichment techniques are highly desired in complex sample analysis, and electrically-driven force based online approaches offer significant application potential, especially in food, the environment, and medicine.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

    38. [38]

    39. [39]

    40. [40]

    41. [41]

    42. [42]

    43. [43]

    44. [44]

    45. [45]

    46. [46]

    47. [47]

    48. [48]

    49. [49]

    50. [50]

    51. [51]

    52. [52]

    53. [53]

    54. [54]

    55. [55]

    56. [56]

    57. [57]

    58. [58]

    59. [59]

    60. [60]

    61. [61]

    62. [62]

    63. [63]

    64. [64]

    65. [65]

    66. [66]

    67. [67]

    68. [68]

    69. [69]

    70. [70]

    71. [71]

    72. [72]

    73. [73]

    74. [74]

    75. [75]

    76. [76]

    77. [77]

    78. [78]

    79. [79]

    80. [80]

    81. [81]

    82. [82]

    83. [83]

    84. [84]

    85. [85]

    86. [86]

    87. [87]

    88. [88]

    89. [89]

    90. [90]

    91. [91]

    92. [92]

    93. [93]

    94. [94]

    95. [95]

    96. [96]

    97. [97]

  • 加载中
    1. [1]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    7. [7]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    8. [8]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    9. [9]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    10. [10]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    11. [11]

      Weizhou Jiao Zhiwei Liu Chao Zhang Zhiguo Yuan Guisheng Qi Jing Gao . Construction and Implementation of a Mode of Chemical Talent Training Driven by Practice and Innovation Ability. University Chemistry, 2024, 39(7): 76-81. doi: 10.12461/PKU.DXHX202405011

    12. [12]

      Hengwei Wei Liqiu Zhao Jiqiang Geng Xuebo Xu Yingpeng Ma Yuhao Liu Mingzhe Han Huan Jiao Lingling Wei . Research on Safety Management of Hazardous Chemicals and Talent Cultivation in Universities Driven by Production-Education Integration. University Chemistry, 2024, 39(10): 289-298. doi: 10.12461/PKU.DXHX202403022

    13. [13]

      Xia Zhang Xiaoguang Sang Jinxia Wang Hao Meng . Problem-Driven Inorganic Chemistry Course Teaching Practice Integrating Industry,Academia,and Research. University Chemistry, 2024, 39(10): 369-376. doi: 10.12461/PKU.DXHX202310027

    14. [14]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    15. [15]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    18. [18]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    19. [19]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(0)
  • Abstract views(402)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return