Citation:
XU Xiaomin, ZHANG Jingshun, CAI Zengxuan, MENG Zhen, HUANG Baifen, CHEN Qing. Determination of trace α-amanitin in urine of mushroom poisoning patient by online solid phase extraction-liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,
;2020, 38(11): 1281-1287.
doi:
10.3724/SP.J.1123.2020.03010
-
An analytical method was established for the determination of trace α-amanitin in the urine of patients suffering from mushroom poisoning by online solid phase extraction-liquid chromatography-tandem mass spectrometry (online SPE-LC-MS/MS). The sample was protein precipitated with formic acid acidified acetonitrile-methanol (5:1, v/v). Reversed-phase liquid-liquid microextraction was used to remove the organic solvent from the sample extract. The toxin was purified by online SPE using an ODS micro column (5 mm×2.1 mm, 5 μm), and separated on an XBridgeTM BEH C18 column (150 mm×3.0 mm, 2.5 μm). Finally, the toxin was measured by MS/MS in the negative electrospray ionization (ESI-) mode. Multiple reaction monitoring (MRM) was used, and the conditions were m/z 917.4>205.1 (quantitative ion transition) and m/z 917.4>257.1. Collision energy for both transitions was 55 eV. A fast valve-switching technique with a quantitative loop was used as an interface between the online SPE and LC-MS/MS modules. The two modules were independent, neither the mobile phase nor the pressure would interfere with each other, thus ensuring the stability of the system. Precise purification by the online system could effectively eliminate the matrix effects in the subsequent MS detection. Weak matrix suppression effects were found, with results of 88.7%-96.5%. The linear range of α-amanitin in urine was 0.1-50 μg/L with a correlation coefficient (r2) of 0.9983. The limit of detection (LOD) and limit of quantification (LOQ) in the sample matrix were 0.03 μg/L and 0.1 μg/L, respectively. The average recoveries at three spiked levels (0.1, 2.0 and 20 μg/L) were 84.3%-91.7% with relative standard deviations (RSDs) of 3.8%-7.2%. The accuracy and precision were evaluated using quality control samples with toxin contents of 0.1 μg/L (LOQ), 0.2 μg/L (2-fold LOQ), 2.0 μg/L (medium level), and 20 μg/L (high level). The calculated average intra-day accuracy was 85.1%-96.0% with the precision of 4.1%-7.8%. The inter-day accuracy was 82.9%-94.8% with the precision of 5.0%-9.5%. The specificity of the method was verified by negative samples derived from patients who suffered only gastroenteritis poisoning, without hepatotoxic symptoms. α-Amanitin was found in urine samples from nine mushroom poisoning patients with hepatotoxic symptoms. The sampling time ranged from 19 h to 92 h. The toxin contents were 0.11-53.1 μg/L. For patients with a high intake of poisonous mushrooms, the toxin content was 53.1 μg/L in a patient's urine sampled 19 h after accidental consumption and 0.19 μg/L in another patient's urine sampled 92 h after poisoning. The content of α-amanitin was only 0.53 μg/L in the urine sample obtained 23 h after consumption for a patient with low intake and 0.11 μg/L in the urine sampled from another patient 40 h after poisoning. Amatoxins can metabolize rapidly in vivo. The laboratory identification of amatoxin poisoning requires a method for trace-level analysis in the biological matrix. It is proved that this method is simple, accurate and sensitive by the application to the analysis of actual samples. The protein precipitation and reversed-phase liquid-liquid microextraction steps are fast and simple. Hence, they can be used as a rapid and effective pre-treatment method for online SPE-LC-MS/MS analysis of water-soluble toxins in biomaterial matrix. Highly sensitive analysis of α-amanitin in urine can be obtained using a precise purification technology via online SPE in this study. The problem of qualitative confirmation of the toxin at trace levels (0.03 μg/L) after poisoning can be solved. The laboratory identification time for amatoxin poisoning in some patients exceeds 90 h. The developed analytical method at trace level (0.1 μg/L of LOQ) can provide reliable technical support for establishing the dose-response relationship of α-amanitin in vivo. It can satisfy for the determination of trace α-amanitin in urine samples from patients with hepatotoxic mushroom poisoning.
-
-
-
[1]
-
[2]
-
[3]
-
[4]
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
-
[13]
-
[14]
-
[15]
-
[16]
-
[17]
-
[18]
-
[19]
-
[20]
-
[21]
-
[22]
-
[23]
-
[1]
-
-
-
[1]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[2]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[3]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[4]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[5]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[6]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[7]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[8]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[9]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[10]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[11]
Haiyang Zhang , Yanzhao Dong , Haojie Li , Ruili Guo , Zhicheng Zhang , Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035
-
[12]
Congyi Wu . Advice for Young Teachers to Promote Teaching Level of Physical Chemistry. University Chemistry, 2024, 39(11): 15-19. doi: 10.3866/PKU.DXHX202402054
-
[13]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[14]
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
-
[15]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[16]
Lihui Jiang , Wanrong Dong , Hua Yang , Yongqing Xia , Hongjian Peng , Jun Yuan , Xiaoqian Hu , Zihan Zeng , Yingping Zou , Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056
-
[17]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[18]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[19]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[20]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[1]
Metrics
- PDF Downloads(13)
- Abstract views(684)
- HTML views(116)