Citation: YU Fangzhi,  ZHANG Dapeng,  YUAN Zheng,  ZHAO Qiang,  WANG Hailin. Application of affinity capillary electrophoresis in the study of protein-DNA interactions[J]. Chinese Journal of Chromatography, ;2020, 38(10): 1133-1142. doi: 10.3724/SP.J.1123.2020.03007 shu

Application of affinity capillary electrophoresis in the study of protein-DNA interactions

  • Corresponding author: WANG Hailin, hlwang@rcees.ac.cn
  • Received Date: 3 March 2020

    Fund Project: National Natural Science Foundation of China (Nos. 91743201, 21621064).

  • Protein-DNA interactions play essential roles in various biological events that determine the cell fate. Research on the molecular mechanism of protein-DNA interactions has helped elucidate diverse fundamental life processes, thereby providing theoretical guidance for establishing clinical treatment and screening potential drug of target diseases. Furthermore, well-known protein-DNA interactions have been utilized to develop advanced bioengineering and bioanalytical techniques, therefore providing robust technical support for related research. Hence, it is important to establish sensitive and rapid analytical methods to study protein-DNA interactions. High-performance capillary electrophoresis (CE) has been widely used in many research fields such as chemistry, life sciences, and environmental sciences, mainly due to its advantages including ultra-high separation efficiency, extremely low sample consumption, and short analysis time. For instance, affinity capillary electrophoresis (ACE) has become an important analytical tool for investigating molecular interactions.
    In this paper, we review the applications of ACE in studying protein-DNA interactions since it was first proposed in 1992, addressing previous significant work in this field. Three major aspects have been summarized in this review: (1) brief introduction to the development of ACE technique; (2) applications of ACE in the fundamental research on the molecular mechanism of protein-DNA interactions; and (3) applications of well-known protein-DNA interactions in CE-based detection of target molecules and reactions. In the first aspect, along with the concept and separation modes of ACE, general strategies to enhance the analytical ability of ACE are briefly introduced. In the second aspect, the applications of ACE in studying several important protein-DNA interactions involving transcription factors (e.g., GCN4), DNA repair proteins (e.g., UvrA, UvrB, and RecA), and methylated DNA-binding proteins (MBDs) are reviewed. In the third aspect, the applications of well-known molecular interactions (e.g., antigen-antibody, aptamer-target, etc.) to facilitate CE-based detection of target molecules (e.g., DNA adducts, DNA methylation, microRNA, single nucleotide polymorphism, etc.) and target reactions (e.g., DNA strand exchange) are addressed.
    Finally, we prospect and discuss the advancements of ACE that can be established in future studies. The following two aspects should be improved in future ACE analysis: (1) the advantages of extremely low volume consumption and short analysis time should be fully utilized to develop sensitive and high-throughput CE platforms for the assessment of rare biological samples and massive uncertain samples, respectively; (2) ACE should be combined with other advanced techniques, such as DNA sequencing and mass spectrometry, to rapidly screen and identify the precise interacting sites of unknown protein-DNA interactions.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

    22. [22]

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

    34. [34]

    35. [35]

    36. [36]

    37. [37]

    38. [38]

    39. [39]

    40. [40]

    41. [41]

    42. [42]

    43. [43]

    44. [44]

    45. [45]

    46. [46]

    47. [47]

    48. [48]

    49. [49]

    50. [50]

    51. [51]

    52. [52]

    53. [53]

    54. [54]

    55. [55]

    56. [56]

    57. [57]

    58. [58]

    59. [59]

    60. [60]

    61. [61]

    62. [62]

    63. [63]

    64. [64]

    65. [65]

    66. [66]

    67. [67]

    68. [68]

    69. [69]

    70. [70]

    71. [71]

    72. [72]

    73. [73]

    74. [74]

    75. [75]

    76. [76]

    77. [77]

    78. [78]

    79. [79]

    80. [80]

    81. [81]

    82. [82]

    83. [83]

    84. [84]

    85. [85]

    86. [86]

    87. [87]

    88. [88]

    89. [89]

    90. [90]

    91. [91]

    92. [92]

    93. [93]

    94. [94]

    95. [95]

    96. [96]

    97. [97]

    98. [98]

    99. [99]

    100. [100]

    101. [101]

    102. [102]

    103. [103]

    104. [104]

    105. [105]

    106. [106]

  • 加载中
    1. [1]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    4. [4]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    5. [5]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    6. [6]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    7. [7]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    8. [8]

      Dan LUOXingcheng LIUDong LITong CHANG . Metal-support interaction effects on CO activation over Con/SiO2 catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2337-2344. doi: 10.11862/CJIC.20250003

    9. [9]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    10. [10]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    11. [11]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    15. [15]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    16. [16]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    17. [17]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    18. [18]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    19. [19]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    20. [20]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

Metrics
  • PDF Downloads(0)
  • Abstract views(725)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return