Citation: YUAN Jiwei,  WANG Jincheng,  XU Weili,  XU Fangxi,  LU Xianbo. Simultaneous determination of polycyclic aromatic hydrocarbons and phthalate esters in surface water by dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by high performance liquid chromatography[J]. Chinese Journal of Chromatography, ;2020, 38(11): 1308-1315. doi: 10.3724/SP.J.1123.2020.01020 shu

Simultaneous determination of polycyclic aromatic hydrocarbons and phthalate esters in surface water by dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by high performance liquid chromatography

  • Corresponding author: WANG Jincheng, wangjincheng@dicp.ac.cn
  • Received Date: 2 March 2020

    Fund Project: Liaoning Natural Science Foundation (No. 2019-MS-317).

  • Polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) are internationally recognized as priority pollutants; hence, it is important to monitor their concentrations in the environment. However, the low concentrations of PAHs and PAEs in surface water make the direct and sensitive determination of these compounds by instrumental methods difficult. Therefore, the development of an accurate and rapid sample pretreating method for the determination of PAHs and PAEs in water has always been the goal of environmental scientists. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) is a simple, rapid, low-cost, sensitive, and environmentally friendly method. Methods based on DLLME-SFO for the simultaneous determination of PAHs and PAEs in surface water have rarely been reported. In this study, a novel DLLME-SFO method was developed for the simultaneous determination of 16 PAHs and 6 PAEs in surface water samples. To optimize the extraction efficiency for the target compounds, various parameters, including the types and volumes of extractants and dispersants, ionic strength, and extraction time, were investigated. First, 1-undecanol (melting point:19℃) and 1-dodecanol (melting point:24℃) were selected as extractive solvents, and their extraction efficiency was investigated. The results showed that 1-dodecanol had better extraction efficiency. The melting point of 1-undecanol was relatively low, and the droplets that solidified during the experiment were easy to melt and break, which led to the low recovery rate of extraction. Then, the effect of the volume (10, 20, 30, 40, 50 μL) of 1-dodecanol was investigated, and the extraction efficiency of the target compounds was found to decrease with increasing volume of 1-dodecanol. Second, the effect of four dispersive solvents (methanol, ethanol, acetonitrile, and acetone) on the extraction efficiencies was studied. The extraction efficiencies of the target compounds were the highest when methanol was used as the dispersant; hence, the effect of different volumes of methanol on the extraction efficiency was further examined. When the volume of methanol was less than 500 μL, the contact area between the extraction solvent and the water phase increased with increasing methanol volume, and the extraction efficiency increased. However, when the volume of methanol was more than 500 μL, the excessive dispersant increased the solubility of the target compound in the water phase, which led to a decrease in the extraction efficiency. Finally, the effects of salt addition and vortex oscillation time on the extraction efficiency were probed. The experimental results indicated that the extraction efficiency increased with an increase in the quantity of NaCl. When the NaCl quantity was greater than 0.2 g, there was no notable change in the extraction efficiency. Vortex oscillation could accelerate the establishment of the extraction equilibrium, and the extraction efficiency reached a stable state when the vortex oscillation time was more than 2 min. According to the abovementioned results, the optimized DLLME-SFO conditions were established as follows:for 5.0 mL water samples, 10 μL of 1-dodecanol was chosen as the extraction solvent, 500 μL of methanol was used as the dispersive solvent, the vortex oscillation extraction time was 2 min, and the NaCl quantity was 0.2 g. The target compounds were analyzed by high-performance liquid chromatography. Separation of the PAHs and PAEs was achieved on a SUPELCOSILTM LC-PAH column (150 mm×4.6 mm, 5 μm) with acetonitrile-water as the mobile phase using a gradient elution program. Fifteen PAHs were detected using a fluorescence detector, and six PAEs and acenaphthylene were detected by an ultraviolet detector. Quantitative determination was achieved by the external standard method. This method was successfully validated for the analyses of the 16 PAHs and 6 PAEs in two types of water samples (tap water and river water). The average recoveries of the target compounds were 60.2%-113.5%, and the corresponding relative standard deviations (RSDs, n=3) were 1.9%-14.3%. The limits of detection (LODs, S/N=3) ranged from 0.002 μg/L to 0.07 μg/L for the PAHs and from 0.2 μg/L to 2.2 μg/L for the PAEs. The limits of quantification (LOQs, S/N=10) ranged from 0.006 μg/L to 0.23 μg/L for the PAHs and from 0.8 μg/L to 7.4 μg/L for PAEs. The proposed method is simple, fast, low-cost, and environmentally friendly, and it is suitable for the rapid determination of trace PAHs and PAEs in surface water samples.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

    14. [14]

    15. [15]

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

  • 加载中
    1. [1]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    4. [4]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    7. [7]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    8. [8]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    9. [9]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    10. [10]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    11. [11]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    13. [13]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    14. [14]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    15. [15]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    19. [19]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    20. [20]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

Metrics
  • PDF Downloads(6)
  • Abstract views(947)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return