Citation: WU Xuejing, JIN Jie, YAN Wei, XIAO Hua, FAN Liuyin, CAO Chengxi. Numerical computation and experimental verification of a derivatized moving reaction boundary originally created with formic buffer and sodium hydroxide[J]. Chinese Journal of Chromatography, ;2016, 34(8): 801-810. doi: 10.3724/SP.J.1123.2016.04029 shu

Numerical computation and experimental verification of a derivatized moving reaction boundary originally created with formic buffer and sodium hydroxide

  • Corresponding author: FAN Liuyin,  CAO Chengxi, 
  • Received Date: 19 April 2016

  • A model of derivatized moving reaction boundary (MRB) is formulated from original MRB formed with formic buffer (phase α) and sodium hydroxide (phase γ). The model shows the formation of a new phase (phase β) with high pH value originated from phase γ, derivatized MRB created with phases α and β, as well as stationary boundary formed between phases β and γ. To demonstrate the validity of this model, the theoretical and numerical procedures are advanced. At the same time, the experimental procedures are also developed relied on a capillary electrophoresis (CE) and a home-made apparatus. There are evident systemic errors and low agreements between the experimental results and theoretical calculation with the original model of MRB developed in our previous papers. However, there are much high agreements between the experiments and theoretical computation relied on the model of derivatized MRB developed herein. The model of derivatized MRB together with the relative theoretical and experimental procedures holds evident significance for the design of the new separation and compressive techniques of samples used widely in electrophoresis including CE.
  • 加载中
    1. [1]

      [1] MacInnes D A, Longsworth L G. Chem Rev, 1932, 11: 172

    2. [2]

      [2] Longsworth L G. J Am Chem Soc, 1945, 67: 1109  

    3. [3]

      [3] Dole V P. J Am Chem Soc, 1945, 67: 1119  

    4. [4]

      [4] Svensson H. Acta Chem Scand, 1948, 2: 841  

    5. [5]

      [5] Alberty R A, Nichol J C. J Am Chem Soc, 1948, 70: 2297

    6. [6]

      [6] Alberty R A. J Am Chem Soc, 1950, 72: 2361  

    7. [7]

      [7] Nichol J C. J Am Chem Soc, 1950, 72: 2367  

    8. [8]

      [8] Nichol J C, Gosting L J. J Am Chem Soc, 1958, 80: 2601  

    9. [9]

      [9] Bier M. Electrophoresis: Theory, Methods and Applications. New York: Acadmic Press, 1959

    10. [10]

      [10] Boĉek P, Deml M, Gebauer P, et al. Analytical Isotachophoresis. New York: VCH Verlagsgesellschaft, 1988

    11. [11]

      [11] Deman J, Rigole W. J Phys Chem, 1970, 74: 1122  

    12. [12]

      [12] Deman J. Anal Chem, 1970, 42: 321  

    13. [13]

      [13] Cao C X, Fan L Y, Zhang W. Analyst, 2008, 133: 1139  

    14. [14]

      [14] Cao C X. J Chromatogr A, 1998, 813: 153  

    15. [15]

      [15] Guo C G, Li S, Wang H Y, et al. Talanta, 2013, 111(13): 20

    16. [16]

      [16] Wang H Y, Li S, Tang Y Y, et al. Analyst, 2013, 138(12): 3544  

    17. [17]

      [17] Cao C X, Zhang W, Qin W H, et al. Anal Chem, 2005, 77: 955  

    18. [18]

      [18] Grochocki W, Markuszewski M J, Quirino J P. J Chromatogr A, 2015, 1424: 111  

    19. [19]

      [19] Kong Y, Yuan J Q, Wang Z L, et al. J Sep Sci, 2014, 37(6): 717  

    20. [20]

      [20] Li W J, Zech I, Gieselmann V, et al. J Chromatogr A, 2015, 1407: 222  

    21. [21]

      [21] Fan L Y, Li C, Zhang W, et al. Electrophoresis, 2008, 29: 3989  

    22. [22]

      [22] Jin J, Shao J, Li S, et al. J Chromatogr A, 2009, 1216: 4913  

    23. [23]

      [23] Sun C, Yang X D, Fan L Y, et al. Anal Bioanal Chem, 2011, 399(10): 3441  

    24. [24]

      [24] Cao C X, Zhang W, Fan L Y, et al. Talanta, 2011, 84(3): 651  

    25. [25]

      [25] Zhang W, Fan L Y, Shao J, et al. Talanta, 2011, 84(2): 547  

    26. [26]

      [26] Tang Y Y, Wang H Y, Chen L, et al. Anal Bioanal Chem, 2013, 405(26): 8587  

    27. [27]

      [27] Tiselius A. Nova Acta Reg Soc Sci Upsal, 1930, 4: 7

    28. [28]

      [28] Mosher R A, Saville D A, Thormann W. The Dynamics of Electrophoresis. Cambridge: VCH Weinheim, 1992

    29. [29]

      [29] David R L. CRC Handbook of Chemistry and Physics. Boca Raton: Fla CRC Press, 1992

    30. [30]

      [30] Vlastimil H, Bohuslav G. Electrophoresis, 2007, 28: 3  

    31. [31]

      [31] Cao C X, Zhou S L, Qian Y T, et al. J Chromatogr A, 2001, 922: 283  

  • 加载中
    1. [1]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    2. [2]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    3. [3]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    8. [8]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    9. [9]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    11. [11]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    14. [14]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    15. [15]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    18. [18]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    19. [19]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    20. [20]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

Metrics
  • PDF Downloads(0)
  • Abstract views(985)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return