Citation: CHEN Erning, ZHAO Xinying, QU Feng. Research advances of aptamers selection for bacterium targets[J]. Chinese Journal of Chromatography, ;2016, 34(4): 389-396. doi: 10.3724/SP.J.1123.2015.12021 shu

Research advances of aptamers selection for bacterium targets

  • Corresponding author: QU Feng, 
  • Received Date: 17 December 2015

    Fund Project: 国家自然科学基金项目(21175011,21375008) (21175011,21375008)

  • Aptamers are RNA or singal stranded DNA (ssDNA), which are selected by systematic evolution of ligands by exponential enrichment (SELEX). Compared to antibodies, aptamers as chemical antibodies are artificially synthesized with low cost. They can bind a wide range of targets, including small molecules, large biological molecules, bacteria and cells. Aptamers targeting bacteria have the potential to be used for pathogen detection in food, medicine and environment. To select aptamers with high affinity to bacteria, centrifugation is mostly used. Binding affinity can be estimated by fluorescence imaging, fluorescence spectra, flow cytometry, DNA capture element (DCE) and enzyme-linked aptamers sorbent assay (ELASA). Selected aptamers combined with biological and chemical analysis methods can be used in bacteria detection. This article introduces the latest development in aptamer selection, characterization and application for bacteria detection and summarizes the aptamers for bacteria from 2011 to 2015.
  • 加载中
    1. [1]

      [1] Green R, Ellington A D, Szostak J W. Nature, 1990, 347(6291):406  

    2. [2]

      [2] Lee Y J, Han S R, Maeng J S, et al. Biochem Bioph Res Commun, 2012, 417(1):414  

    3. [3]

      [3] McKeague M, McConnell E M, Cruz-Toledo J, et al. J Mol Evol, 2015, 81(5):150

    4. [4]

      [4] Torres-Chavolla E, Alocilja E C. Biosens Bioelectron, 2009, 24(11):3175  

    5. [5]

      [5] Hamula C L A, Zhang H, Li F, et al. TrAC-Trends Anal Chem, 2011, 30(10):1587  

    6. [6]

      [6] Amaya-González S, De-Los-Santos-Alvarez N, Miranda-Ordieres A J, et al. Sensors, 2013, 13(12):16292  

    7. [7]

      [7] Gedi V, Kim Y P. Sensors, 2014, 14(10):18302  

    8. [8]

      [8] McKeague M, Giamberardino A, Derosa M C. Environmental Biosensors. Ontario, Canada:In Tech, 2011:17

    9. [9]

      [9] Ozalp V C, Bilecen K, Kavruk M, et al. Future Microbiol, 2013, 8(3):387  

    10. [10]

      [10] Fan M, McBurnett S R, Andrews C J, et al. Biomol Tech, 2008, 19(5):311

    11. [11]

      [11] Kim Y S, Song M Y, Jurng J, et al. Anal Biochem, 2013, 436(1):22  

    12. [12]

      [12] Maeng J S, Kim N, Kim C T, et al. J Nanosci Nanotechnol, 2012, 12(7):5138  

    13. [13]

      [13] Kim Y S, Chung J, Song M Y, et al. Biosens Bioelectron, 2014, 54(12):195

    14. [14]

      [14] Li H, Ding X, Peng Z, et al. Can J Microbiol, 2011, 57(6):453  

    15. [15]

      [15] Hamula C L A, Zhang H, Guan L L, et al. Anal Chem, 2008, 80(20):7812  

    16. [16]

      [16] Suh S H, Dwivedi H P, Choi S J, et al. Anal Biochem, 2014, 459:39  

    17. [17]

      [17] Lee S H, Ahn J Y, Lee K A, et al. Biosens Bioelectron, 2015, 68:272  

    18. [18]

      [18] Labib M, Zamay A S, Kolovskaya O S, et al. Anal Chem, 2012, 84(21):8966

    19. [19]

      [19] Han S R, Lee S W. J Microbiol Biotechnol, 2013, 23(6):878  

    20. [20]

      [20] Duan N, Wu S, Chen X, et al. J Agric Food Chem, 2013, 61(13):3229  

    21. [21]

      [21] Park H C, Baig I A, Lee S C, et al. Appl Biochem Biotech, 2014, 174(2):793  

    22. [22]

      [22] Duan N, Ding X, Wu S, et al. Microbiol Meth, 2013, 94(3):170  

    23. [23]

      [23] Han S R, Lee S W. Ann Microbiol, 2014, 64:883  

    24. [24]

      [24] Chang Y C, Yang C Y, Sun R L, et al. Sci Rep-UK, 2013, 3:1863

    25. [25]

      [25] Turek D. World J Transl Med, 2013, 2(3):67  

    26. [26]

      [26] Duan N, Wu S, Chen X, et al. J Agric Food Chem, 2012, 60:4034  

    27. [27]

      [27] Degrasse J A. PLoS One, 2012, 7(3):65

    28. [28]

      [28] Wu W H, Li M, Wang Y, et al. Nanoscale Res Lett, 2012, 7(1):658  

    29. [29]

      [29] Meng C, Zhao X, Qu F, et al. J Chromatogr A, 2014, 1358:269  

    30. [30]

      [30] Shamah S M, Healy J M, Cload S T. Accounts Chem Res, 2008, 41(1):130  

    31. [31]

      [31] Moon J, Kim G, Park S, et al. Sensors, 2015, 15(4):8884  

    32. [32]

      [32] Duan N, Wu S, Ye Y, et al. Anal Chim Acta, 2013, 804(804C):151

    33. [33]

      [33] Wu S, Duan N, Shi Z, et al. Anal Chem, 2014, 86(6):3100  

    34. [34]

      [34] Duan N, Wu S, Ma X, et al. Anal Biochem, 2014, 454(1):1

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    3. [3]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    4. [4]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    5. [5]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    6. [6]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    7. [7]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    8. [8]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

Metrics
  • PDF Downloads(0)
  • Abstract views(1541)
  • HTML views(178)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return