Citation:
CHENG Jianguo, LIU Kaiying, BAI Mindong, CHENG Chao, YU Yixuan, ZHOU Xinying. Determination of 2-methylisoborneol and geosmin in drinking water using headspace solid phase micro-extraction coupled with gas chromatography-mass spectrometry[J]. Chinese Journal of Chromatography,
;2015, 33(12): 1287-1293.
doi:
10.3724/SP.J.1123.2015.08031
-
The odorous compounds of 2-methylisoborneol (2-MIB) and geosmin (GSM) heavily produced and released in water source are one of the most important factors leading to off-flavor emergencies and resident water consumption panic in drinking water. A headspace solid phase micro-extraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) method was established for the simultaneous determination of these two trace earthy and musty compounds in reservoir water, reservoir soil and tap water. The conditions of HS-SPME, such as salt amount, extraction time and extraction temperature, were optimized based on orthogonal analysis. The qualitative and quantitative analyses of 2-MIB and GSM were carried out in the electron impact (EI)-selective ion scanning mode. The results showed that the linear relationship between peak area and concentration of 2-MIB and GSM was good enough (r2≥0.998) from 5 to 1000 ng/L, the limits of detection were 0.72 ng/L for 2-MIB, 0.34 ng/L for GSM and the limits of quantification were 2.40 ng/L for 2-MIB, 1.13 ng/L for GSM. When the target samples spiked in the range of 10-600 ng/L, the average recoveries of the target compounds were 93.6%-107.7% (RSD≤6.1%, n=6). Based on the above method, the target compounds in reservoir water, reservoir soil and tap water in a certain region of Liaoning Province were analyzed. The results showed that the two target odors in reservoir water were 3.0-3.6 ng/L. As for the extract of the soil around the reservoir, 2-MIB was 8.1 ng/L and GSM was 17.8 ng/L. The odorous substances were not detected in the tap water. This method is simple, accurate, reliable, highly sensitive and no need of organic solvents. And it is suitable for the detection of 2-MIB and GSM in drinking water.
-
-
-
[1]
[1] Sun D L, Yu J W, An W, et al. J Environ Sci, 2013, 25(3): 460

-
[2]
[2] Klausen C, Nicolaisen M H, Strobel B W, et al. FEMS Microbiol Ecol, 2005, 52(2): 265

-
[3]
[3] Li Z L, Hobson P, An W, et al. Water Res, 2012, 46(16): 5165

-
[4]
[4] Korth W, Ellis J, Bowmer K. Water Sci Technol, 1992, 25(2): 115
-
[5]
[5] Suffet I H, Schweitzer L, Khiari D. Rev Environ Sci Bio, 2004, 3: 3

-
[6]
[6] GB 5749-2006
-
[7]
[7] Bartels J H M, Brady B M, Suffet I H. J AWWA, 1987, 79(1): 26
-
[8]
[8] Shin H S, Ahn H S. Chromatographia, 2004, 59: 107
-
[9]
[9] Li F A. Water Technology (李福安. 供水技术), 2012, 6(4): 54
-
[10]
[10] Manickum T, John W. Hydrol Current Res, 2012, 3(3): 1000134
-
[11]
[11] Manickum T, John W, Malungana M P. Hydrol Current Res, 2011, 2(5): 121. DOI: 10.4172/2157-7587.1000121
-
[12]
[12] Watson S B, Brownlee B, Satchwill T, et al. Water Res, 2000, 34(10): 2818

- [13]
-
[14]
[14] Wu J H, Wang Z H, Wang B, et al. Chinese Journal of Chromatography (吴金浩, 王召会, 王摆, 等. 色谱), 2013, 31(12): 1218

-
[15]
[15] Yu J W, An W, Cao N, et al. J Environ Sci, 2014, 26: 1389

-
[16]
[16] Ma X Y, Gao N Y, Li Q S, et al. Environmental Pollution and Control (马晓雁, 高乃云, 李青松. 环境污染与防治), 2006, 28(8): 631
-
[17]
[17] Ding Z, Peng S F, Xia W W, et al. Int J Environ Anal Chem, 2014: 697260. http://dx.doi.org/10.1155/2014/697260
-
[18]
[18] Li L, Song L R, Gan N Q, et al. Chinese Journal of Analytical Chemistry (李林, 宋立荣, 甘南琴, 等. 分析化学), 2005, 33(8): 1058
-
[19]
[19] Peng S F, Ding Z, Xia W W, et al. J Anal Methods Chem, 2013: 340658. http://dx.doi.org/10.1155/2013/340658
- [20]
-
[1]
-
-
-
[1]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[2]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[3]
Zhongbin Pan , Shijie Huang , Yunjie Luo , Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040
-
[4]
Shunü Peng , Huamin Li , Zhaobin Chen , Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043
-
[5]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[6]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[7]
Tengyue ZHANG , Jingjing FENG , Zili LIANG , Jia′nan DAI , Jing MA . Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104
-
[8]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036
-
[9]
Runjie Li , Hang Liu , Xisheng Wang , Wanqun Zhang , Wanqun Hu , Kaiping Yang , Qiang Zhou , Si Liu , Pingping Zhu , Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059
-
[10]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[11]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[12]
Yuanchun Pan , Xinyun Lin , Leyi Yang , Wenya Hu , Dekui Song , Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052
-
[13]
Xiaojun Liu , Lang Qin , Yanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018
-
[14]
Yifan Xie , Liyun Yao , Ruolin Yang , Yuxing Cai , Yujie Jin , Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133
-
[15]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[16]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[17]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[18]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[19]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[20]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(523)
- HTML views(29)
Login In
DownLoad: