Citation: WANG Yong, ZHAO Xinying, SHI Dongdong, YANG Ge, QU Feng. Research advances of aptamers selection for small molecule targets[J]. Chinese Journal of Chromatography, ;2016, 34(4): 361-369. doi: 10.3724/SP.J.1123.2015.05001 shu

Research advances of aptamers selection for small molecule targets

  • Corresponding author: QU Feng, 
  • Received Date: 5 May 2015

    Fund Project: 国家自然科学基金项目(21175011,21375008) (21175011,21375008)"十二五"农村领域国家科技计划课题(2011BAD26B040406). (2011BAD26B040406)

  • Aptamers are ribonucleic acid (RNA) or single-stranded deoxyribonucleic acid (ssDNA) selected by systematic evolution of ligands by exponential enrichment (SELEX). Aptamers can identify small molecules, proteins, cells, microorganisms and other targets with high affinity and specificity, and have been widely applied in biology, medicine, food and environmental monitoring. However, available aptamers of practical use are limited. The complex and difficult screening of aptamers are the key to restrict its wide application. Differing from biomacromolecules, cells and microorganisms, small molecules have less binding sites and weaker affinity with nucleic acids. And they usually need to be immobilized on substrates. In addition, due to the tiny differences of size, weight and charge of the target-ssDNA/RNA complex and ssDNA/RNA, their separation is difficult. Therefore, the aptamer selection of small molecules is more difficult than biomacromolecules or cells. The selection of methods for immobilizing the targets or library and the optimization of separation process proceed mainly based on the structure characteristics and applications of aptamers. In this paper, the screening methods for molecules with different groups, molecules containing the same group and chiral molecules are introduced. Also, the library design, the methods for separating targets-ssDNA complex and characterizing affinity interaction are discussed. The sequences and dissociation constants (Kd) of about 40 aptamers reported since 2008 are listed.
  • 加载中
    1. [1]

      [1] Ellington A D, Szostak J W. Nature, 1990, 346(6287):818  

    2. [2]

      [2] Tuerk C, Gold L. Science, 1990, 249(4968):505  

    3. [3]

      [3] Proske D, Blank M, Buhmann R, et al. Appl Microbiol Blot, 2005, 69(4):367  

    4. [4]

      [4] Klussmann S. The Aptamer Handbook:Functional Oligonucleotides and Their Applications. Weinheim:Wiley-VCH, 2006

    5. [5]

      [5] Zhou C L, Xu H X. Chinese Journal of Frontier Health and Quarantine, 2011, 34(4):276 周成林, 许化溪. 中国国境卫生检疫杂志, 2011, 34(4):276

    6. [6]

      [6] Liang M, Liu R, Su R X, et al. Progress in Chemistry, 2012, 24(7):1378 梁淼, 刘锐, 苏荣欣, 等. 化学进展, 2012, 24(7):1378

    7. [7]

      [7] Xu D M, Wu M, Zhou Y, et al. Chinese Journal of Analytical Chemistry, 2011, 39(6):925 徐敦明, 吴敏, 邹远, 等. 分析化学, 2011, 39(6):925  

    8. [8]

      [8] Wu J, Zhu Y, Xue F, et al. Microchim Acta, 2014, 181(5/6):479

    9. [9]

      [9] Jenison R D, Gill S C, Pardi A, et al. Science, 1994, 263(5152):1425  

    10. [10]

      [10] Jo M, Ahn J Y, Lee J, et al. Oligonucleotides, 2011, 21(2):85  

    11. [11]

      [11] Zhou N, Wang J, Zhang J, et al. Talanta, 2013, 108:109  

    12. [12]

      [12] Derbyshire N, White S J, Bunka D H J, et al. Anal Chem, 2012, 84(15):6595  

    13. [13]

      [13] Mei H, Bing T, Yang X, et al. Anal Chem, 2012, 84(17):7323  

    14. [14]

      [14] Kim Y S, Hyun C J, Kim I A, et al. Bioorg Med Chem, 2010, 18(10):3467  

    15. [15]

      [15] Yang X, Bing T, Mei H, et al. Analyst, 2011, 136(3):577  

    16. [16]

      [16] Kalikova K, Riesova M, Tesarova E. Cent Eur J Chem, 2012, 10(3):450

    17. [17]

      [17] Liu M, Kagahara T, Abe H, et al. Bioorg Med Chem Lett, 2009, 19(5):1484  

    18. [18]

      [18] Hyun S, Lee K H, Han A, et al. Nucleic Acid Ther, 2011, 21(3):157  

    19. [19]

      [19] Han S R, Yu J, Lee S W. Biochem Bioph Res Co, 2014, 448(4):397  

    20. [20]

      [20] Boese B J, Corbino K, Breaker R R. Nucleos Nucleot Nucl, 2008, 27(8):949  

    21. [21]

      [21] Miyachi Y, Shimizu N, Ogino C, et al. Bioorg Med Chem Lett, 2009, 19(13):3619  

    22. [22]

      [22] Bae H, Ren S, Kang J, et al. Nucleic Acid Ther, 2013, 23(6):443  

    23. [23]

      [23] Yang J, Bowser M T. Anal Chem, 2013, 85(3):1525  

    24. [24]

      [24] Qi C, Bing T, Mei H, et al. Biosens Bioelectron, 2013, 41:157  

    25. [25]

      [25] Stoltenburg R, Nikolaus N, Strehlitz B. J Anal Methods Chem, 2012:415697

    26. [26]

      [26] Kim C H, Lee L P, Min J R, et al. Biosens Bioelectron, 2014, 51:426  

    27. [27]

      [27] Wochner A, Menger M, Orgel D, et al. Anal Biochem, 2008, 373(1):34  

    28. [28]

      [28] Song K M, Cho M, Jo H, et al. Anal Biochem, 2011, 415(2):175  

    29. [29]

      [29] Barthelmebs L, Jonca J, Hayat A, et al. Food Control, 2011, 22(5):737  

    30. [30]

      [30] McKeague M, Bradley C R, De Girolamo A, et al. Int J Mol Sci, 2010, 11(12):4864  

    31. [31]

      [31] Eissa S, Ng A, Siaj M, et al. Anal Chem, 2013, 85(24):11794  

    32. [32]

      [32] Chen X, Huang Y, Duan N, et al. Anal Bioanal Chem, 2013, 405(20):6573  

    33. [33]

      [33] Ma X, Wang W, Chen X, et al. Eur Food Res Technol, 2014, 238(6):919  

    34. [34]

      [34] Ma X, Wang W, Chen X, et al. Food Control, 2015, 47:545  

    35. [35]

      [35] Malhotra S, Pandey A K, Rajput Y S, et al. J Mol Recognit, 2014, 27(8):493  

    36. [36]

      [36] Chen X, Huang Y, Duan N, et al. Microchim Acta, 2014, 181(11/12):1317

    37. [37]

      [37] McKeague M, Velu R, Hill K, et al. Toxins, 2014, 6(8):2435  

    38. [38]

      [38] Chen X, Huang Y, Duan N, et al. J Agric Food Chem, 2014, 62(42):10368  

    39. [39]

      [39] Kiani Z, Shafiei M, Rahimi-Moghaddam P, et al. Anal Chim Acta, 2012, 748:67  

    40. [40]

      [40] Joeng C B, Niazi J H, Lee S J, et al. Bioorg Med Chem Lett, 2009, 17(15):5380  

    41. [41]

      [41] Lauridsen L H, Shamaileh H A, Edwards S L, et al. PLoS One, 2012, 7(7):e41702

    42. [42]

      [42] Martin J A, Parekh P, Kim Y, et al. PLoS One, 2013, 8(3):e53419

    43. [43]

      [43] Gong S, Ren H L, Tian R Y, et al. Biosens Bioelectron, 2013, 49:547  

    44. [44]

      [44] Bawazer L A, Newman A M, Gu Q, et al. Acs Nano, 2014, 8(1):387  

    45. [45]

      [45] Wu Y, Zhan S, Wang L, et al. Analyst, 2014, 139(6):1550  

    46. [46]

      [46] Rajendran M, Ellington A D. Anal Bioanal Chem, 2008, 390(4):1067  

    47. [47]

      [47] Kim M, Um H J, Bang S, et al. Environ Sci Technol, 2009, 43(24):9335  

    48. [48]

      [48] He J, Liu Y, Fan M, et al. J Agric Food Chem, 2011, 59(5):1582  

    49. [49]

      [49] Reinemann C, Stoltenburg R, Strehlitz B. Anal Chem, 2009, 81(10):3973  

    50. [50]

      [50] Xu S, Yuan H, Chen S, et al. Anal Biochem, 2012, 423(2):195  

    51. [51]

      [51] Elshafey R, Siaj M, Zourob M. Biosens Bioelectron, 2015, 68:295  

    52. [52]

      [52] Cho Y S, Lee E J, Lee G H, et al. Bioorg Med Chem Lett, 2015, 25(23):5536  

    53. [53]

      [53] Spiga F M, Maietta P, Guiducci C. Acs Comb Sci, 2015, 17(5):326  

    54. [54]

      [54] Vanschoenbeek K, Vanbrabant J, Hosseinkhani B, et al. J Steroid Biochem, 2015, 147:10  

    55. [55]

      [55] Niazi J H, Lee S J, Gu M B. Bioorg Med Chem Lett, 2008, 16(15):7245  

    56. [56]

      [56] Rouah-Martin E, Mehta J, van Dorst B, et al. Int J Mol Sci, 2012, 13(12):17138  

    57. [57]

      [57] Ohsawa K, Kasamatsu T, Nagashima J, et al. Anal Sci, 2008, 24(1):167  

    58. [58]

      [58] Grozio A, Gonzalez V M, Millo E, et al. Nucleic Acid Ther, 2013, 23(5):322  

    59. [59]

      [59] Jayasena S D. Clin Biochem, 1999, 45(9):1628

    60. [60]

      [60] Kusser W. J Biotechnol, 2000, 74(1):27

    61. [61]

      [61] Eulberg D, Klussmann S. Chembiochem, 2003, 4(10):979  

    62. [62]

      [62] Cissé C, Mathieu S V, Abeih M B O, et al. Acs Chem Biol, 2014, 9(12):2779  

    63. [63]

      [63] Liu M, Kagahara T, Abe H, et al. Nucleic Acids Symp, 2008, 52(1):513  

    64. [64]

      [64] Liu M, Jinmei H, Abe H, et al. Bioorg Med Chem Lett, 2010, 20(9):2964  

    65. [65]

      [65] Huizenga D E, Szostak J W. Biochemistry, 1995, 34(2):656  

    66. [66]

      [66] Sassanfar M, Szostak J W. Nature, 1993, 364(5):550

    67. [67]

      [67] Gebhardt K, Shokraei A, Babaie E, et al. Biochemistry, 2000, 39(24):11

    68. [68]

      [68] Harada K D, Frankel A. EMBO J, 1995, 14(23):5798

    69. [69]

      [69] Burke D H, Hoffman D C. Biochemistry, 1998, 37(13):4653  

    70. [70]

      [70] Bruno J G, Carrillo M R, Cadieux C L, et al. J Mol Recognit, 2009, 22(3):197  

    71. [71]

      [71] Ahn J, Cho M, Lee S, et al. Mol Cell Toxicol, 2008, 4(2):100

    72. [72]

      [72] Boles T C, Hogan M E. Biochemistry, 1987, 26(2):367  

    73. [73]

      [73] De Cian A, Mergny J L. Nucleic Acids Res, 2007, 35(8):2483  

    74. [74]

      [74] Berezovski M, Krylov S N. J Am Chem Soc, 2002, 124(46):13674  

    75. [75]

      [75] Krylov S N, Berezovski M. Analyst, 2003, 128(6):571  

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    3. [3]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    4. [4]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    5. [5]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    6. [6]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    10. [10]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    11. [11]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    14. [14]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    15. [15]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    16. [16]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

Metrics
  • PDF Downloads(5)
  • Abstract views(571)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return