Citation: WANG Zhicong, SHA Yuebing, YU Xiaobo, LIANG Yuerong. Determination of flavonol glycosides in tea samples by ultra-high performance liquid chromatography-photodiode array detection-tandem mass spectrometry[J]. Chinese Journal of Chromatography, ;2015, 33(9): 974-980. doi: 10.3724/SP.J.1123.2015.04028 shu

Determination of flavonol glycosides in tea samples by ultra-high performance liquid chromatography-photodiode array detection-tandem mass spectrometry

  • Corresponding author: WANG Zhicong, 
  • Received Date: 22 April 2015

    Fund Project: 浙江省公益技术应用研究项目(2015C37070). (2015C37070)

  • An ultra-high performance liquid chromatography-photodiode array detection-tandem mass spectrometry (UPLC-PDA-MS/MS) method was developed for the determination of flavonol glycosides in tea samples. The chromatographic separation was performed on an UPLC HSS T3 column by gradient elution with the mobile phases of acetonitrile and water both containing 0.1%(v/v) formic acid. A total of 15 flavonol glycosides which include 3 myricetin glycosides, 6 quercetin glycosides and 6 kaempferol glycosides were positively identified in green and black tea samples by comparing the retention times and mass spectra of the samples with standards and publications. The quantities of flavonol glycosides were relatively calculated with the standard quercetin-3-rhamnosylglucoside (Q-GRh) which was calibrated with external quantification method using multi-reaction monitoring (MRM) mode. The results showed that there were different flavonol glycoside distributions in green tea and black tea. The total amount of flavonol glycosides in green tea was 1.7 times of that in black tea. The major flavonol glycosides in green tea were myricetin-3-galactoside (M-Ga), myricetin-3-glucoside (M-G), quercetin-3-glucosyl-rhamnosyl-galactoside (Q-GaRhG), quercetin-3-glucosyl-rhamnosyl-glucoside (Q-GRhG), kaempferol-3-glucosyl-rhamnosyl-galactoside (K-GaRhG) and kaempferol-3-glucosyl-rhamnosyl-glucoside (K-GRhG), but for black tea, the major flavonol glycosides were quercetin-3-rhamnosylglucoside (Q-GRh), quercetin-3-glucoside (Q-G), kaempferol-3-rhamnosylglucoside (K-GRh) and kaempferol-3-galactoside (K-Ga). The present method is accurate, convenient for the rapid identification of flavonol glycosides and analysis of constituent distribution for green and black teas.
  • 加载中
    1. [1]

      [1] Senanayake N J. Funct Foods, 2013, 5(4): 1529  

    2. [2]

      [2] Pinto M S. Food Res Int, 2013, 53(2): 558  

    3. [3]

      [3] Peterson J, Dwyer J, Bhagwat S, et al. Food Compos Anal, 2005, 18(6): 487  

    4. [4]

      [4] Price K R, Rhodes M J, Barnes K A. J Agric Food Chem, 1998, 46(7): 2517  

    5. [5]

      [5] Scharbert S, Hofmann T. J Agric Food Chem, 2005, 53(13): 5377  

    6. [6]

      [6] Jiang H Y, Engelhardt U H, Thrane C, et al. Food Chem, 2015, 183(1): 30

    7. [7]

      [7] Wu C Y, Xu H R, Heritier J, et al. Food Chem, 2012, 132(1): 144  

    8. [8]

      [8] Zhang W B, Wang Z C, Zhang L Y. Chinese Journal of Analytical Chemistry (张维冰, 王智聪, 张凌怡. 分析化学), 2014, 42(3): 415

    9. [9]

      [9] Zhang L Y, Wang Z C, Zhang W B. Chinese Journal of Chromatography (张凌怡, 王智聪, 张维冰. 色谱), 2013, 31(2): 122

    10. [10]

      [10] Souza L M, Cipriani T R, Serrato R V, et al. J Chromatogr A, 2008, 1207(1/2): 101

    11. [11]

      [11] Zhang L, Li N, Ma Z Z, et al. J Agric Food Chem, 2011, 59(16): 8754  

    12. [12]

      [12] Hooft J J, Akermi M, Yelda F, et al. J Agric Food Chem, 2012, 60(36): 8841  

    13. [13]

      [13] Dou J, Lee V S, Tzen J T, et al. J Agric Food Chem, 2007, 55(18): 7462  

    14. [14]

      [14] Yang Z Y, Tu Y Y, Baldermann S, et al. Food Sci Technol Int, 2009, 42(8): 1439

    15. [15]

      [15] Zhao Y, Chen P, Lin L Z, et al. Food Chem, 2011, 126(3): 1269  

    16. [16]

      [16] Lin L Z, Harnly J M. J Agric Food Chem, 2007, 55(4): 1084  

    17. [17]

      [17] Lin L Z, Chen P, Harnly J M. J Agric Food Chem, 2008, 56(17): 8130  

    18. [18]

      [18] Zhang W B, Wang Z C, Zhang L Y. Chinese Journal of Analytical Chemistry (张维冰, 王智聪, 张凌怡. 分析化学), 2013, 41(12): 1851

    19. [19]

      [19] Chen H, Zuo Y Y. Food Chem, 2007, 101(4): 1357  

    20. [20]

      [20] Vrhovsek U, Masuero D, Palmieri L, et al. J Food Compos Anal, 2012, 25(1): 9  

    21. [21]

      [21] Zhang R T, Chen J H, Shi Q, et al. Food Res Int, 2014, 56(1): 47

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    5. [5]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    6. [6]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    7. [7]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    14. [14]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    15. [15]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    19. [19]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(0)
  • Abstract views(363)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return