Citation: SONG Chunxia, LIU Yingrong, LIU Zelong, WANG Wei, TIAN Songbai. Recent development in petroleomics based on the high-resolution mass spectrometry[J]. Chinese Journal of Chromatography, ;2015, 33(5): 488-493. doi: 10.3724/SP.J.1123.2015.01016 shu

Recent development in petroleomics based on the high-resolution mass spectrometry

  • Corresponding author: SONG Chunxia, 
  • Received Date: 14 January 2015

    Fund Project: 国家重点基础研究发展计划"973"项目(2012CB224801). (2012CB224801)

  • As the increase of the remaining reserves of the heavier/sourer crude oil and the requirement of the clean energy, it is significant to sufficiently characterize the molecular composition of the petroleum for the selection of the refining processes and the realization of the economic value of the crude oil. Petroleomics, which is based on the high-resolution mass spectrometry platform, is a powerful tool to achieve this goal. In this paper, the analytical technology applied in petroleomics and its most recent development are reviewed, and the perspective of petroleomics is also discussed.
  • 加载中
    1. [1]

      [1] Marshall A G, Rodgers R P. Acc Chem Res, 2004, 37(1): 53  

    2. [2]

      [2] Rodgers R P, Schaub T M, Marshall A G. Anal Chem, 2005, 77(1): 20A  

    3. [3]

      [3] Rodgers R P, McKenna A M. Anal Chem, 2011, 83(12): 4665  

    4. [4]

      [4] Marshall A G, Rodgers R P. Proc Natl Acad Sci USA, 2008, 105(47): 18090  

    5. [5]

      [5] Japan Petroleum Energy Center. The 4th Euro-Japan Conference for Petroleum Technology. (2011-08-31). http://www.pecj.or.jp/japanese/overseas/conference/pdf/conference08

    6. [6]

      [6] Song J Y, Cheng L. Contemporary Chemical Industry (宋锦玉, 成立. 当代化工), 2014, 43(8): 1498

    7. [7]

      [7] Panda S K, Andersson J T, Schrader W. Anal Bioanal Chem, 2007, 389(5): 1329  

    8. [8]

      [8] Tang Y J, Wen Z G, Hou D J. Journal of Oil and Gas Technology (唐友军, 文志刚, 侯读杰. 石油天然气学报), 2006, 28(3): 23

    9. [9]

      [9] Van Geem K M, Pyl S P, Reyniers M F, et al. J Chromatogr A, 2010, 1217(43): 6623  

    10. [10]

      [10] Gao X B, Chang Z Y, Dai W, et al. Chinese Journal of Chromatography (高儇博, 常振阳, 代威, 等. 色谱), 2014, 32(10): 1058

    11. [11]

      [11] Shi Q, Zhao S Q, Xu C M, et al. Journal of Chinese Mass Spectrometry Society (史权, 赵锁奇, 徐春明, 等. 质谱学报), 2008, 29(6): 367

    12. [12]

      [12] Shi Q, Zhang Y, Xu C, et al. Scientia Sinica Chimica, 2014, 44(5): 694  

    13. [13]

      [13] Hsu C S, Hendrickson C L, Rodgers R P, et al. J Mass Spectrom, 2011, 46(4): 337  

    14. [14]

      [14] Schaub T M, Linden H B, Hendrickson C L, et al. Rapid Commun Mass Spectrom, 2004, 18(14): 1641  

    15. [15]

      [15] Smith D F, Schaub T M, Rodgers R P, et al. Anal Chem, 2008, 80(19): 7379  

    16. [16]

      [16] Linden H B, Gross J H. Rapid Commun Mass Spectrom, 2012, 26(3): 336  

    17. [17]

      [17] Zhan D, Fenn J B. Int J Ion Mobility Spectrom, 2000, 194(2): 197

    18. [18]

      [18] Qian K, Robbins W K, Hughey C A, et al. Energy Fuels, 2001, 15(6): 1505  

    19. [19]

      [19] Liu Y R, Liu Z L, Zhu X Y, et al. Journal of Chinese Mass Spectrometry Society (刘颖荣, 刘泽龙, 祝馨怡, 等. 质谱学报), 2008, 29: 54

    20. [20]

      [20] Panda S K, Andersson J T, Schrader W. Angew Chem Int Ed, 2009, 48(10): 1788  

    21. [21]

      [21] Lobodin V V, Juyal P, McKenna A M, et al. Energy Fuels, 2014, 28(1): 447  

    22. [22]

      [22] Fujii T. Mass Spectrom Rev, 2000, 19(3): 111  

    23. [23]

      [23] Lobodin V V, Juyal P, McKenna A M, et al. Energy Fuels, 2014, 28(11): 6841  

    24. [24]

      [24] Purcell J M, Hendrickson C L, Rodgers R P, et al. Anal Chem, 2006, 78(16): 5906  

    25. [25]

      [25] Bae E, Na J G, Chung S H, et al. Energy Fuels, 2010, 24(4): 2563  

    26. [26]

      [26] Cho Y, Ahmed A, Kim S. Anal Chem, 2013, 85(20): 9758  

    27. [27]

      [27] Panda S K, Brockmann K J, Benter T, et al. Rapid Commun Mass Spectrom, 2011, 25(16): 2317  

    28. [28]

      [28] Kim Y H, Kim S. J Am Soc Mass Spectrom, 2010, 21(3): 386  

    29. [29]

      [29] Pereira T M C, Vanini G, Tose L V, et al. Fuel, 2014, 131: 49  

    30. [30]

      [30] Wu C, Qian K, Nefliu M, et al. J Am Soc Mass Spectrom, 2010, 21(2): 261  

    31. [31]

      [31] Rummel J L, McKenna A M, Marshall A G, et al. Rapid Commun Mass Spectrom, 2010, 24(6): 784  

    32. [32]

      [32] Nyadong L, McKenna A M, Hendrickson C L, et al. Anal Chem, 2011, 83(5): 1616  

    33. [33]

      [33] Du Z H, Zhang L, Liu S Y. Chinese Journal of Chromatography (杜振华, 张磊, 刘树业. 色谱), 2011, 29(4): 314  

    34. [34]

      [34] Cao X L, Gong J D, Chen M X, et al. Chinese Journal of Chromatography (曹晓林, 巩佳第, 陈铭学, 等. 色谱), 2014, 32(11): 1181

    35. [35]

      [35] Smith E A, Lee Y J. Energy Fuels, 2010, 24(9): 5190  

    36. [36]

      [36] Pomerantz A E, Mullins O C, Paul G, et al. Energy Fuels, 2011, 25(7): 3077  

    37. [37]

      [37] Zhurov K O, Kozhinov A N, Tsybin Y O. Energy Fuels, 2013, 27(6): 2974  

    38. [38]

      [38] Kozhinov A N, Zhurov K O, Tsybin Y O. Anal Chem, 2013, 85(13): 6437  

    39. [39]

      [39] Becker C, Fernandez Lima F A, Russell D H. Spectroscopy, 2009, 24(4): 38

    40. [40]

      [40] Hertkorn N, Ruecker C, Meringer M, et al. Anal Bioanal Chem, 2007, 389(5): 1311  

    41. [41]

      [41] Ruotolo B T, Tate C C, Russell D H. J Am Soc Mass Spectrom, 2004, 15(6): 870  

    42. [42]

      [42] Sawyer H A, Marini J T, Stone E G, et al. J Am Soc Mass Spectrom, 2005, 16(6): 893  

    43. [43]

      [43] Hoffmann W, Hofmann J, Pagel K. J Am Soc Mass Spectrom, 2014, 25(3): 471  

    44. [44]

      [44] Ohshimo K, Komukai T, Moriyama R, et al. J Phys Chem A, 2014, 118(22): 3899  

    45. [45]

      [45] Cossoul E, Hubert-Roux M, Sebban M, et al. Anal Chim Acta, 2015, 856: 46  

    46. [46]

      [46] Barrere C, Selmi W, Hubert-Roux M, et al. Polym Chem, 2014, 5(11): 3576  

    47. [47]

      [47] Becker C, Qian K, Russell D H. Anal Chem, 2008, 80(22): 8592  

    48. [48]

      [48] Fernandez-Lima F A, Becker C, McKenna A M, et al. Anal Chem, 2009, 81(24): 9941  

    49. [49]

      [49] Ahmed A, Cho Y J, No M, et al. Anal Chem, 2011, 83(1): 77  

    50. [50]

      [50] Ahmed A, Cho Y, Giles K, et al. Anal Chem, 2014, 86(7): 3300  

    51. [51]

      [51] Maire F, Neeson K, Denny R, et al. Anal Chem, 2013, 85(11): 5530  

    52. [52]

      [52] Fasciotti M, Lalli P M, Klitzke C F, et al. Energy Fuels, 2013, 27(12): 7277  

    53. [53]

      [53] Ponthus J, Riches E. Int J Ion Mobility Spectrom, 2013, 16(2): 95  

    54. [54]

      [54] Fasciotti M, Lalli P M, Heerdt G, et al. Int J Ion Mobility Spectrom, 2013, 16(2): 117  

    55. [55]

      [55] Zhou Y, Zhang K, Yuan H M, et al. Chinese Journal of Chromatography (周愿, 张珅, 袁辉明, 等. 色谱), 2014, 32(4): 355

    56. [56]

      [56] Du J H, Liu X, Xu X P. Chinese Journal of Chromatography (杜晶辉, 刘旭, 徐小平. 色谱), 2014, 32(1): 7

    57. [57]

      [57] Kim S, Rodgers R P, Blakney G T, et al. J Am Soc Mass Spectrom, 2009, 20(2): 263  

    58. [58]

      [58] Haapala M, Purcell J M, Saarela V, et al. Anal Chem, 2009, 81(7): 2799  

    59. [59]

      [59] Jjunju F P M, Li A, Badu-Tawiah A, et al. Analyst, 2013, 138(13): 3740  

    60. [60]

      [60] Gaspar A, Zellermann E, Lababidi S, et al. Anal Chem, 2012, 84(12): 5257  

  • 加载中
    1. [1]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    4. [4]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    5. [5]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    6. [6]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    7. [7]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    8. [8]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    13. [13]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    16. [16]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(0)
  • Abstract views(291)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return