Citation:
Vanik GHOULIPOUR, Zahra HASSANKHANI-MAJD. Selective separation and determination of isoproterenol on thin layers of bismuth silicate ion-exchanger[J]. Chinese Journal of Chromatography,
;2015, 33(6): 667-671.
doi:
10.3724/SP.J.1123.2015.01014
-
A simple and sensitive method for the separation and determination of isoproterenol from other doping drugs has been developed on thin layers of bismuth silicate, a synthetic inorganic ion exchanger as adsorbent in thin layer chromatography (TLC). A mixture of methanol and 0.1 mol/L formic acid (3:7, v/v) was employed as the mobile phase. The development time was 32 min. The quantitative measurement were performed with a Camag TLC Scanner-3 at wavelength (λ) of 410 nm. The isoproterenol recovery in this procedure was 98.9%. The linear correlation coefficient was greater than 0.9871 and the relative standard deviation (RSD) was less than 0.94. The limit of detection (LOD) and limit of quantification (LOQ) were 7.7×10-7mol/L and 3.85 ×10-6mol/L, respectively. This method has been applied in the determination of isoproterenol in dosage forms and in biological fluids.
-
-
-
[1]
[1] Conway L, Morgan D. Drugs in Sports. London: British Medical Association, 2002
-
[2]
[2] Jimnez C, Ventura R, Segura J. J Chromatogr B, 2002, 767: 341
-
[3]
[3] Mueller R K, Grosse J, Lang R, et al. J Chromatogr B, 1995, 674: 1
-
[4]
[4] Sherma J, Fried B. Handbook of Thin-Layer Chromatography. New York: Marcel Dekker Inc., 1991: 407
- [5]
-
[6]
[6] Qureshi M, Varshney K G. Inorganic Ion-Exchangers in Chemical Analysis. Florida: CRC Press, 1991
-
[7]
[7] Husain S W, Ghoulipour V, Sepahrian H. Acta Chromatogr, 2004, 14: 102
-
[8]
[8] Bowers L D, Podraza J. USADA Guide to Prohibited Classes of Substances and Prohibited Methods of Doping. Colorado: Anti-Doping Agency, 2002: 7
- [9]
-
[10]
[10] Nieto J L, Laviada I D, Guillen A, et al. Cell Signal, 1993, 5: 169
-
[11]
[11] Krenek P, Kmecova J, Kucerova D, et al. Eur J Heart Fail, 2009, 11(12): 140
- [12]
-
[13]
[13] Liu Y M, Cao J T, Zheng Y L, et al. J Sep Sci, 2008, 31(13): 2463
-
[14]
[14] Zhou G J, Zhang G F, Chen H Y. Anal Chem Acta, 2002, 463: 257
-
[15]
[15] Zhang C, Huang J, Zhang Z, et al. Anal Chem Acta, 1998, 374: 105
-
[16]
[16] Al-Warthan A A, Al-Tamrah S A, Al-Akel A. Anal Sci, 1994, 10: 449
-
[17]
[17] Bonifacio Y G, Marccoline-Junior L H, Fatibello-Filho O. Anal Lett, 2004, 37(10): 2111
-
[18]
[18] Lupetti K O, Vieira I C, Fatibello-Filho O. Talanta, 2002, 57: 135
-
[19]
[19] Solieh P, Polydorou C K, Koupparis M A, et al. J Pharm Biomed Anal, 2000, 22: 781
-
[20]
[20] Nevado J J B, Gallego J M L, Laguna P B. Anal Chem Acta, 1995, 300: 293
-
[21]
[21] Ensafi A A, Khoddami E, Karimi-Maleh H. Int J Electrochem Sci, 2011, 6: 2596
-
[22]
[22] Kutluay A, Aslanoglu M. Acta Chim Slov, 2010, 57: 157
-
[23]
[23] Elord J L, Schmit J L, Morley J A. J Chromatogr A, 1996, 723: 235
-
[24]
[24] Hassankhani-Majd Z, Ghoulipour V, Husain S W. Acta Chromatogr, 2006, 16: 173
-
[25]
[25] Ahuja S, Scypinski S. Handbook of Modern Pharmaceutical Analysis. Burlington: Academic Press, 2011: 430
- [26]
-
[27]
[27] ICH Guidelines Q2B, Validation of Analytical Procedures: Methodology (CPMP/ICH/281/95). Geneva, 1996
-
[28]
[28] Papp E, Farkas A, Otta K H, et al. J Planar Chromatogr, 2000, 13: 328
-
[29]
[29] Ferenczi-Fodor K, Vegh Z, Nagy-Turak A, et al. J AOAC Int, 2001, 84: 1265
-
[30]
[30] Dallas F A A, Read H, Ruane R J, et al. Recent Advances in Thin-Layer Chromatography. New York: Springer, 1988: 11
-
[31]
[31] Ferenczi-Fodor K, Renger B, Vegh Z. J Planar Chromatogr, 2010, 23: 173
-
[32]
[32] Ramirez A, Gutierrez R, Diaz G, et al. J Chromatogr B, 2003, 784: 315
-
[33]
[33] Mazlom-Ardakani M, Sabaghian F, Khoshroo A, et al. Chin J Catal, 2014, 35: 565
-
[34]
[34] Lupetti K O, Vieira I C, Fatibello-Filho O. Talanta, 2002, 57: 135
-
[35]
[35] Rezaei B, Ensafi A A, Haghighatnia F. Anal Methods, 2012, 4: 1753
-
[36]
[36] Rocha F R P, Nobrega J A, Fatibello D. Green Chem, 2001, 3: 216
-
[1]
-
-
-
[1]
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
-
[2]
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
-
[3]
Wenli Xu , Yingzhao Zhang , Rui Wang , Chenyang Liu , Jialin Liu , Xiangyu Huo , Xinying Liu , He Zhang , Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454
-
[4]
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
-
[5]
Ya Song , Mingxia Zhou , Zhu Chen , Huali Nie , Jiao-Jing Shao , Guangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200
-
[6]
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
-
[7]
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
-
[8]
Huanyan Liu , Jiajun Long , Hua Yu , Shichao Zhang , Wenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712
-
[9]
Shuo Zhang , Haitao Liao , Zhi-Qun Liu , Chong Yan , Jia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284
-
[10]
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
-
[11]
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
-
[12]
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
-
[13]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[14]
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
-
[15]
Yuhuan Meng , Long Zhang , Lequan Wang , Junming Kang , Hongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025
-
[16]
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
-
[17]
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
-
[18]
Weihong Ding , Kaiyue Song , Xianglong Li , Xiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495
-
[19]
Panke Zhou , Hong Yu , Mun Yin Chee , Tao Zeng , Tianli Jin , Hongling Yu , Shuo Wu , Wen Siang Lew , Xiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279
-
[20]
Hao-Fei Ni , Jia-He Lin , Gele Teri , Qiang-Qiang Jia , Pei-Zhi Huang , Hai-Feng Lu , Chang-Feng Wang , Zhi-Xu Zhang , Da-Wei Fu , Yi Zhang . B-site ion regulation strategy enables performance optimization and multifunctional integration of hybrid perovskite ferroelectrics. Chinese Chemical Letters, 2025, 36(3): 109690-. doi: 10.1016/j.cclet.2024.109690
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(175)
- HTML views(27)