Citation: DU Hui, ZHOU Na, LI Jingjing, FAN Fei. A cell membrane chromatography method for investigation of 5-hydroxytryptamine receptor-ligustilide interaction[J]. Chinese Journal of Chromatography, ;2015, 33(5): 530-534. doi: 10.3724/SP.J.1123.2015.01003 shu

A cell membrane chromatography method for investigation of 5-hydroxytryptamine receptor-ligustilide interaction

  • Corresponding author: DU Hui, 
  • Received Date: 4 January 2015

    Fund Project: 陕西省中医药管理局科研课题(13-ZY005). (13-ZY005)

  • A rat striatum cell membrane chromatography (CMC) frontal analysis method was developed for the determination of the equilibrium dissociation constants (KD) for 5-hydroxytryptamine (5-HT) receptor 5-HT1D-ligustilide interactions. Rat striatum was used for preparation of the cell membrane stationary phase (CMSP). An enzyme-linked immunosorbent assay (ELISA) was applied to determine the 5-HT level of CMSP before and after the adsorption of cell membrane, and the value was (40.5±2.3) pg per gram of silica. The CMC-offline-HPLC system was applied to specifically recognize the mixed standard solution of sumatriptan and ligustilide. Sumatriptan, a 5-HT1D agonist of 24.2 to 242 nmol/L, was pumped through a CMC column continuously, and the breakthrough curves were recorded. For further competitive studies, the mobile phase that contained ligustilide (37.0-370 nmol/L) was pumped through the column to saturate the binding sites. Afterwards, sumatriptan was propelled towards the column. The breakthrough curves were recorded and compared with those obtained from the column without saturation. KD values obtained using frontal analysis were 389 nmol/L and 4.21 μmol/L for sumatriptan and ligustilide, respectively. The competitive binding study indicated that the CMC method could be a quick and efficient way for determining the KD values in drug-receptor interactions.
  • 加载中
    1. [1]

      [1] Leonardi M, Steiner T J, Scher A T, et al. J Headache Pain, 2005, 6(6): 429  

    2. [2]

      [2] Yang S, Zhang D K, Su T T, et al. Chinese Journal of Experimental Traditional Medical Formulae (杨胜, 张定堃, 苏柘僮, 等. 中国实验方剂学杂志), 2011, 17(14): 225

    3. [3]

      [3] Zheng Q, Wei S F, Wu Z F, et al. Pharmacology and Clinics of Chinese Materia Medica (郑琴, 魏韶锋, 伍振峰, 等. 中药药理与临床), 2011, 27(4): 3

    4. [4]

      [4] Wang C Y, Du J R, Qian Z M. Chinese Pharmaceutical Journal (汪程远, 杜俊蓉, 钱忠明. 中国药学杂志), 2006, 41(12): 889

    5. [5]

      [5] Zuo A H, Wang L, Xiao H B. China Journal of Chinese Materia Medica (左爱华, 王莉, 肖红斌. 中国中药杂志), 2012, 37(22): 3350

    6. [6]

      [6] Wang X F, Zhang Y J, Ye J, et al. Chinese Journal of Chromatography (王雄飞, 张玉杰, 叶静, 等. 色谱), 2013, 31(8): 813  

    7. [7]

      [7] Hu Q H, Wang C R, Li J, et al. Chinese Journal of Chromatography (胡青红, 王超然, 李静, 等. 色谱), 2013, 31(7): 714  

    8. [8]

      [8] He L C, Yang G D, Geng X D. Chin Sci Bull, 1999, 44(9): 826  

    9. [9]

      [9] He L C, Wang S C, Geng X D. Chromatographia, 2001, 54(1/2): 71

    10. [10]

      [10] Du H, Wang S C, Ren J, et al. J Chromatogr B, 2012, 887/888: 67

    11. [11]

      [11] Du H, Ren J, Wang S C, et al. Anal Bioanal Chem, 2011, 400(10): 3625  

    12. [12]

      [12] Hou X F, Wang S C, Zhang T, et al. J Pharm Biomed Anal, 2014, 101: 141  

    13. [13]

      [13] Hou X F, Zhou M Z, Jiang Q, et al. J Chromatogr A, 2009, 1216(42): 7081  

    14. [14]

      [14] Moaddel R, Jozwiak K, Whittington K, et al. Anal Chem, 2005, 77(3): 895  

    15. [15]

      [15] Sanghvi M, Moaddel R, Wainer I W. J Chromatogr A, 2011, 1218(49): 8791  

    16. [16]

      [16] Moaddel R, Wainer I W. Nat Protoc, 2009, 4(2): 197  

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    3. [3]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    4. [4]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    9. [9]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    12. [12]

      Shasha Liu Yongmei Liu Youqin Li Juan Wang Lisen Sun Jinfen Zhang Xiang Gao Xingwen Sun . “Cognitive Experience-Strengthening Foundation-Frontier Innovation”: Construction and Practice of the Chemistry Experimental Curriculum System for Fudan University. University Chemistry, 2024, 39(7): 180-187. doi: 10.12461/PKU.DXHX202405095

    13. [13]

      Tianlong Zhang Chenjia Song Wenmin Zhao Hongsheng Tang Yan Li Hua Li . Dream as a Horse, Poem “Liquor” while the Age. University Chemistry, 2024, 39(9): 48-54. doi: 10.12461/PKU.DXHX202403076

    14. [14]

      Ping Cai Yaxian Zhu Tao Hu . Frontier Research and Basic Theory in the Classroom: an Introduction to the Inorganic Chemistry Teaching Case under the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 84-88. doi: 10.12461/PKU.DXHX202408027

    15. [15]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    16. [16]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    17. [17]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    18. [18]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    19. [19]

      CCS Chemistry | 国家自然科学基金委员会高飞雪&杨俊林:国家自然科学基金化学基础研究的资助策略、趋势与前沿. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405124): -.

    20. [20]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

Metrics
  • PDF Downloads(0)
  • Abstract views(318)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return