Citation: HU Mei, ZHANG Yijun, YANG Jinghua, ZHOU Xiaomao, WEI Zhuqing, DING Xiaoqing, ZHANG Yuping. Rapid fabrication of molecularly imprinted polymer fibers for solid phase microextraction of bisphenol A[J]. Chinese Journal of Chromatography, ;2015, 33(2): 123-131. doi: 10.3724/SP.J.1123.2014.10008 shu

Rapid fabrication of molecularly imprinted polymer fibers for solid phase microextraction of bisphenol A

  • Corresponding author: ZHANG Yuping, 
  • Received Date: 20 October 2014
    Available Online: 2 December 2014

    Fund Project: National Training Programs of Innovation and Entrepreneurship for Undergraduates (No. 201310467026). (No. 201310467026)

  • The rapid preparation of molecularly imprinted polymer (MIP) fibers was reported using bisphenol A (BPA) as the template molecular, acetonitrile (ACN) as the porogenic solvent, α -methacrylic acid (MAA) as the functional monomer, ethylene dimethacrylate (EDMA) as the crosslinker, and azodiisobutyronitrile (AIBN) as the thermal initiator. It was carried out within a capillary of 530 μm inner diameter (I. D.) by microwave irradiation in 7 min. The resulted BPA-MIP fibers were pushed out from the capillary, eluted in a vial and inserted in the capillary again followed by the application of the solid phase microextraction (SPME) procedure. The extraction performance was investigated in detail by varying the molar ratios between the template and the monomer (BPA/MAA), the concentration of NaCl, the extraction and desorption time, the pH value and the desorption solvents. The selectivity of the prepared MIP and non-molecularly imprinted polymer (NIP) fibers was comparatively evaluated by selecting two structurally-related compounds, phenol (P) and 4-phenylphenol (PP), and non-analogue dicyandiamide (DCD). The established method was successfully applied for the pretreatment and determination of BPA from beverage samples coupled to high performance liquid chromatography (HPLC). Under the optimal conditions, the linear range of BPA was 10-400 μg/L; the detection limit (LOD) was 0.45 μg/L and the recoveries spiked in the mineral water were 88.4%-102.8%. The results demonstrated that the developed method can determine BPA in real samples with some advantages of simple pretreatment, rapid analysis, low limit of detection and low consumption of materials.
  • 加载中
    1. [1]

      [1] Sieratowicz A, Stange D, Oehlmann U S, et al. Environ Pollut, 2011, 159(10): 2766  

    2. [2]

      [2] Kandaraki E, Chatzigeorgiou A, Livadas S, et al. J Clin Endocrinol Metab, 2011, 96(3): 480  

    3. [3]

      [3] Inoue M, Masuda Y, Okada F, et al. Water Res, 2008, 42(6/7): 1379

    4. [4]

      [4] Motoyama A, Suzuki A, Shirota O, et al. Rapid Commun Mass Spectrom, 1999, 13(21): 2204  

    5. [5]

      [5] Inoue K, Wada M, Higuchi T, et al. J Chromatogr B, 2002, 773(2): 97  

    6. [6]

      [6] Ballesteros-Gómez A, Rubio S, Pérez-Bendito D. J Chromatogr A, 2009, 1216(3): 449  

    7. [7]

      [7] Sun Y, Lrie M, Kishikawa N, et al. Biomed Chromatogr, 2004, 18(8): 501  

    8. [8]

      [8] Alexiadou D K, Maragou N C, Thomaidis N S, et al. J Sep Sci, 2008, 31(12): 2272  

    9. [9]

      [9] Rezaee M, Yamini Y, Shariati S, et al. J Chromatogr A, 2009, 1216(9): 1511  

    10. [10]

      [10] He J, Lv R H, Zhan H J, et al. Anal Chim Acta, 2010, 674(1): 53  

    11. [11]

      [11] Hu Y L, Li J W, Hu Y F, et al. Talanta, 2010, 82(2): 464  

    12. [12]

      [12] Vicente B S, Villoslada F N, Moreno-Bondi M C. Anal Bioanal Chem, 2004, 380(1): 115  

    13. [13]

      [13] Baggiani C, Baravalle P, Giovannoli C, et al. Anal Bioanal Chem, 2010, 397(2): 815  

    14. [14]

      [14] Zhang J H, Jiang M, Zou L J, et al. Anal Bioanal Chem, 2006, 385(4): 780  

    15. [15]

      [15] Jin Y F, Chen N, Liu R Q, et al. Journal of the Chinese Chemical Society, 2013, 60(8): 1043  

    16. [16]

      [16] Chen J, Bai L Y, Tian M K, et al. Anal Methods, 2014, 6(2) 602

    17. [17]

      [17] Jin Y F, Chen N, Liu R Q, et al. Chinese Journal of Chromatography, 2013, 31(6): 587

    18. [18]

      [18] Jin Y F, Zhang Y P, Huang M X, et al. J Sep Sci, 2013, 36(8): 1429  

    19. [19]

      [19] Wang X, Wang L Y, He X W, et al. Talanta, 2009, 78(2): 327  

    20. [20]

      [20] Chen J, Bai L Y, Liu K F, et al. Int J Mol Sci, 2014, 15(1): 574  

    21. [21]

      [21] Syu M J, Deng J H, Nian Y M. Anal Chim Acta, 2004, 504(1): 167  

    22. [22]

      [22] Qu J R, Zhang J J, Gao Y F, et al. Food Chem, 2012, 135(3): 1148  

    23. [23]

      [23] Yan H, Cheng X, Yang G. J Agric Food Chem, 2012, 60(22): 5524  

  • 加载中
    1. [1]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    2. [2]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    3. [3]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    8. [8]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    9. [9]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    10. [10]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    11. [11]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    12. [12]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    15. [15]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    16. [16]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    17. [17]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    18. [18]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    19. [19]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

Metrics
  • PDF Downloads(0)
  • Abstract views(504)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return