Citation:
DAI Chaozheng. Deductive inference on the plate height equation of ultra performance liquid chromatography[J]. Chinese Journal of Chromatography,
;2015, 33(5): 535-540.
doi:
10.3724/SP.J.1123.2014.10007
-
In recent years, separation and analysis workers have made considerable progress on ultra performance liquid chromatography (UPLC). A lot of separation works have been completed which have never been done before. But the theory about chromatographic dynamics of UPLC from the beginning up to now, is remaining in 1950's. Some people explain the principle of UPLC by the van Deemter equation, but this is not right. In this paper, the dynamic process of UPLC has been studied. According to the chromatographic dynamics principle and starting from the heat conduction equation, the plate height equation of UPLC including the influence of mobile phase friction heat production has been deduced as follows: H=2γDm/u+((2λdpu1/3)/(u1/3+ω(Dm/dp)1/3))+((2ku)/((1+k)2(1+κ0)κd))+ ((θ(κ0+κ0k+k)2dp2u)/(Dmκ0(1+κ0)2(1+k)2)) +(κi(κ0+κ0k+k)2dp5/2u2/3)/(3κ0Ω Dm2/3(1+κ0)2(1+k)2+(r02(κ0+κκ0k+k)u)/(4(1+k)Dr)exp(-Kr02α). The last item on the right represents the contribution of mobile phase friction heat. When the linear velocity of mobile phase is lower, the contribution of mobile phase friction heat tending to become zero, the plate height equation is reduced to the Horvath and Lin equation. When the linear velocity of mobile phase is high, the temperature difference between the column axial center and edge is directly proportional to the mobile phase linear speed square, and the contribution of thermal effect will largely increased. In this paper, the author clearly pointed out that the column efficiency of UPLC has a direct bearing on the column diameter. Using fine diameter column is helpful to implement column efficiency. Too high mobile phase velocity will lead to the column efficiency collapsed.
-
-
- [1]
- [2]
- [3]
- [4]
-
[5]
[5] Dai C Z. Chinese Journal of Chromatography (戴朝政. 色谱), 1999, 17(6): 514
-
[6]
[6] Lu P Z, Dai C Z, Zhang X M. Chromatographic Theory Foundation. 2nd ed. Beijing: Science Press (卢佩章, 戴朝政, 张祥民. 色谱理论基础. 2版). 北京: 科学出版社, 1998
-
[7]
[7] Zhang Y K, Bao M S, Zhou G M, et al. Scientia Sinica: Series B (张玉奎, 包绵生, 周桂敏, 等. 中国科学:B辑), 1980(11): 1057
-
[8]
[8] Dai C Z. China Patent (戴朝政. 中国专利), ZL201010516298.3. 2014-01-29
-
[9]
[9] Li D, Li Z K, Lin J, et al. China Measurement & Test (李丹, 李祖琨, 林洁, 等. 中国测试), 2013, 39(4): 52
-
-
-
[1]
Zhenjun Mao , Haorui Gu , Haiyan Che , Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013
-
[2]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[3]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[4]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[5]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[6]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[7]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[8]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[9]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[10]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[11]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[12]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[13]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[14]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[15]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[16]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[17]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[18]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[19]
Haiying Jiang , Huilin Guo , Yongliang Cheng , Tongyu Xu , Jiquan Liu , Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091
-
[20]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(466)
- HTML views(97)