Citation: WU Lidong, LIU Huan, LI Jincheng, FU Xiaochen, SONG Yi. Determination of phenol in water by electrochemical tyrosinase biosensor based on ordered graphitized mesoporous carbon and evaluated by high performance liquid chromatography[J]. Chinese Journal of Chromatography, ;2014, 32(12): 1368-1372. doi: 10.3724/SP.J.1123.2014.09008 shu

Determination of phenol in water by electrochemical tyrosinase biosensor based on ordered graphitized mesoporous carbon and evaluated by high performance liquid chromatography

  • Corresponding author: SONG Yi, 
  • Received Date: 4 September 2014

    Fund Project: 国家自然科学基金项目(21307161) (21307161)中央级公益性科研院所基本科研业务费专项资金项目(2013C006). (2013C006)

  • A novel electrochemical tyrosinase biosensor based on ordered graphitized mesoporous carbon (GMC) was obtained, which was used as a platform for phenol detection. The accuracy of tyrosinase biosensor method was comparatively evaluated by high performance liquid chromatography (HPLC). By entrapping tyrosinase molecules (6.5 nm×9.8 nm×5.5 nm) into the mesopores of GMC (diameter 10 nm, GMC10), the "interspace confinement effect" of GMC10 may improve the stability of tyrosinase in vitro. After 21-day storage, the GMC10-based tyrosinase biosensor retained more than 85% of its initial response. It is indicated that GMC10 with "interspace confinement effect" can significantly prolong the life of tyrosinase molecules in vitro. Furthermore, the GMC-based tyrosinase biosensor displayed excellent analytical performances for phenol detection, such as stability, repeatability, selectivity, sensitivity and limit of detection. The GMC-based tyrosinase biosensor demonstrated a linear response for phenol from 0.1 to 10 μmol/L with a low detection limit of 20 nmol/L. The comparative study between HPLC and GMC-based tyrosinase biosensor showed that the detection of phenol in water sample by the GMC-based tyrosinase biosensor method is reliable, accurate and effective. The proposed GMC-based tyrosinase biosensor proved to be a very promising "pre-alarm" tool for rapid detecting phenol pollution in emergency accidents.
  • 加载中
    1. [1]

      [1] Nicholson R L, Hipskind J, Hanau R M. Physiol Mol Plant P, 1989, 35(3): 243  

    2. [2]

      [2] Saha N C, Bhunia F, Kaviraj A. Bull Environ Contam Toxicol, 1999, 63(2): 195  

    3. [3]

      [3] Martirani L, Giardina P, Marzullo L, et al. Water Res, 1996, 30(8): 1914  

    4. [4]

      [4] Giuffre A M. Eur Food Res Technol, 2013, 237(4): 555  

    5. [5]

      [5] Vrsaljko D, Haramija V, Hadzi-Skerlev A. Electr Pow Syst Res, 2012, 93: 24  

    6. [6]

      [6] Wang W, Huang X H, Wang H, et al. Chinese Journal of Chromatography (王伟, 黄显会, 王辉, 等. 色谱), 2013, 31(10): 1028

    7. [7]

      [7] Bai W W, Liu S H, Cao J P, et al. Chinese Journal of Chromatography (白玮玮, 刘书慧, 曹江平, 等. 色谱), 2013, 31(3): 254  

    8. [8]

      [8] Na W, Wei Q, Lan J N, et al. Micropor Mesopor Mater, 2010, 134(1/2/3): 72

    9. [9]

      [9] Wang F, Guo C, Yang L R, et al. Biores Tech, 2010, 101(23): 8931  

    10. [10]

      [10] Wang Z L, Liu X J, Lv M F, et al. Carbon, 2010, 48(11): 3182  

    11. [11]

      [11] Wang X, Lu X B, Wu L D, et al. ChemElectroChem, 2014, 1(4): 808  

    12. [12]

      [12] Canbay E, Akyilmaz E. Anal Biochem, 2014, 444: 8  

    13. [13]

      [13] Qu Y, Liao N N, Chen J P, et al. Nanosci Nanotech Let, 2014, 6(4): 319  

    14. [14]

      [14] Yin H S, Zhou Y L, Xu J, et al. Anal Chim Acta, 2010, 659(1/2): 144

    15. [15]

      [15] Zhang Y C, Ji C. Anal Chem, 2010, 82(12): 5275  

    16. [16]

      [16] Wu S O, Wang H N, Tao S Y, et al. Anal Chim Acta, 2011, 686(1/2): 81

    17. [17]

      [17] Ibarra-Escutia P, Gomez J J, Calas-Blanchard C, et al. Talanta, 2010, 81(4/5): 1636

    18. [18]

      [18] Lee D, Lee J, Kim J, et al. Adv Mater, 2005, 17(23): 2828  

    19. [19]

      [19] Wu L D, Lu X B, Zhang H J, et al. ChemSusChem, 2012, 5(10): 1918  

    20. [20]

      [20] Lu X B, Xiao Y, Lei Z B, et al. Biosen Bioelectron, 2009, 25(1): 244  

  • 加载中
    1. [1]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    2. [2]

      Tong Wang Liangyu Hu Shiqi Chen Xinqiang Fu Rui Wang Kun Li Shuangyan Huan . Determination of Benzenediol Isomers in Cosmetics Using High-Performance Liquid Chromatography Empowered by “Mathematical Separation”. University Chemistry, 2026, 41(1): 9-19. doi: 10.12461/PKU.DXHX202503128

    3. [3]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    4. [4]

      Jiaxi Xu Yuan Ma . Stable Conformation of Several Common Aromatic Compounds. University Chemistry, 2025, 40(12): 183-186. doi: 10.12461/PKU.DXHX202508007

    5. [5]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    6. [6]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    7. [7]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    9. [9]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    12. [12]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    13. [13]

      Jingjie Rao Wenwen Cai Jiahui Zhao Xu Yang Ziyan Yan Tianjin Zhang Hang Zhang . Digital Exploration of Analytical Chemistry Experiments in the Context of Machine Learning and Big Data: A Case Study on Water Hardness Measurement. University Chemistry, 2026, 41(1): 276-288. doi: 10.12461/PKU.DXHX202504104

    14. [14]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    18. [18]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    19. [19]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(0)
  • Abstract views(626)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return