Citation: LI Mufei, LIU Jinsong, ZHOU Xin, ZHU Guohua, GONG Hongping, CHEN Bei, WANG Ling, SUN Junjun. Pollution characteristics of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in PM2.5 of Hangzhou City during winter[J]. Chinese Journal of Chromatography, ;2014, 32(9): 948-954. doi: 10.3724/SP.J.1123.2014.05023 shu

Pollution characteristics of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in PM2.5 of Hangzhou City during winter

  • Corresponding author: LIU Jinsong, 
  • Received Date: 22 May 2014
    Available Online: 15 July 2014

    Fund Project: 国家环保公益性行业科研专项项目(201209017) (201209017)浙江省环保科研计划项目(2010B07) (2010B07)浙江省环保科技项目(2012A038). (2012A038)

  • In order to evaluate the distributions and concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) in aerosol, PM2.5 samples were collected concurrently at five sites in January 2014 in Hangzhou. The analytes were analyzed with isotope dilution and high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) based on US EPA 1613B method and US EPA 1668B method. The results showed that the mass concentrations of PM2.5 were in the range of 85-168 μg/m3, which were much higher than the national quality standard. The values suggested that the PM2.5 pollution was relatively serious in Hangzhou City, yet it has been improved when compared with the results of 2004. The toxic equivalent quantities (TEQs) of PCDD/Fs in PM2.5 were in the range of 0.277-0.488 pg I-TEQ/m3, which were much higher than the results in 2004. Octachlorodibenzo-p-dioxin(OCDD) accounted for a large proportion to the total concentrations in PCDD/Fs, while 2,3,4,7,8-pentachlorodibenzofurans (2,3,4,7,8-PeCDF) contributed the highest to the TEQ. The values of PCBs and dioxin-like PCBs (DL-PCBs) varied from 2.9-8.1 pg/m3 and 2.6-6.1 fg WHO-TEQ/m3, respectively. PCB-28 was the most abundant contributor to the concentrations of PCBs, while PCB-126 contributed the highest to the TEQ of DL-PCBs. Gas-particle distributions of PCDD/Fs and PCBs shows that PCDD/Fs were mainly distributed in the particle phase, but PCBs were preferably adsorbed in the gas phase.
  • 加载中
    1. [1]

      [1] Liu H X, Zhou Q F, Wang Y W, et al. Environ Int, 2008, 34 (1): 67  

    2. [2]

      [2] Kim D G, Choi K I, Lee D H. Atmos Res, 2011, 101(1/2): 386

    3. [3]

      [3] Wang M S, Chen S J, Huang K L, et al. Environ Eng Sci, 2010, 27(11): 955  

    4. [4]

      [4] Ma J, Cheng J P, Xie H Y, et al. Environ Geochem Health, 2007, 29: 503  

    5. [5]

      [5] Ravindra K, Mittal A K, Grieken R V. Rev Environ Health, 2001, 16(3): 169

    6. [6]

      [6] Cindoruk S S, Tasdemir Y. Environ Pollut, 2007, 148(1): 325  

    7. [7]

      [7] Li H, Feng J L, Sheng G Y, et al. Chemosphere, 2008, 70: 576  

    8. [8]

      [8] Gao D, Liu J S, Zhu G H, et al. Chinese Journal of Analytical Chemistry (高丹, 刘劲松, 朱国华, 等. 分析化学), 2013, 41(12): 1862

    9. [9]

      [9] Schafer K, Harbusch A, Emeis S, et al. Atmos Environ, 2008, 42: 4036  

    10. [10]

      [10] Charron A, Harrison R M. Environ Sci Technol, 2005, 39: 7768  

    11. [11]

      [11] Ma J, Cheng J P, Xie H Y, et al. Environ Geochem Health, 2007, 29: 503  

    12. [12]

      [12] Sun J L, Liu D M, Zhang Q H, et al. Geoscience (孙俊玲, 刘大锰, 张庆华, 等. 现代地质), 2009, 23(2): 378

    13. [13]

      [13] Li Y M. [PhD Dissertation]. Beijing: Graduate University of Chinese Academy of Sciences (李英明. [博士学位论文]. 北京: 中国科学院研究生院), 2008

    14. [14]

      [14] Yu L P, Mai B X, Meng X Z, et al. Atmos Environ, 2006, 40: 96  

    15. [15]

      [15] Correa O, Rifai H, Raun L, et al. Atmos Environ, 2004, 38: 6687  

    16. [16]

      [16] Mandalakis M, Tsapakis M, Tsoga A, et al. Atmos Environ, 2002, 36: 4023  

    17. [17]

      [17] Wang W, Qin S T, Song Y, et al. J Environ Sci, 2011, 23: S36

    18. [18]

      [18] Li Y M, Jiang G B, Wang Y W, et al. Atmos Environ, 2008, 42: 2037  

    19. [19]

      [19] Deng Y Y, Peng P A, Ren M, et al. Atmos Environ, 2011, 45: 2541  

    20. [20]

      [20] Lee S J, Ale D, Chang Y S, et al. Environ Pollut, 2008, 153: 215  

    21. [21]

      [21] Raun L H, Correa O, Rifai H, et al. Chemosphere, 2005, 60: 973  

    22. [22]

      [22] Xu M X, Yan J H, Lu S Y, et al. Chemosphere, 2009, 76(11): 1540  

    23. [23]

      [23] Wang M S, Chen S J, Huang K L, et al. Chemosphere, 2010, 80(10): 1220  

    24. [24]

      [24] Castro Jiménez J, Dueri S, Eisenreich S J, et al. Environ Pollution, 2009, 157(3): 1024  

    25. [25]

      [25] Geng C Z, Li M L, Lou Y H, et al. Chinese Journal of Environmental Protection Science (耿存珍, 李明伦, 楼迎华, 等. 环境保护科学), 2009, 35(4): 1

    26. [26]

      [26] Cindoruk S S, Tasdemir Y. Environ Monit Assess, 2010, 162: 67  

    27. [27]

      [27] Mari M, Nadal M, Schuhmacher M, et al. Chemosphere, 2008, 73: 990  

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Xuyang ChaiHiu-Lok NganYuanyuan SongZenghua QiLifang ZhaoWenqi ChenShanshan ChenZhenhua YangRuijin LiChuan DongZhu YangZongwei Cai . Real-world PM2.5 exposure induces prostaglandin disruption and low-density lipoprotein oxidation, exacerbating atherogenesis in ApoE−/− mice. Chinese Chemical Letters, 2025, 36(9): 110671-. doi: 10.1016/j.cclet.2024.110671

    3. [3]

      Yan LongWenbo ZhaoQing CaoXiangyu LiFukui LiYanwei HuShiyu SongKaikai Liu . Phosphorescent carbon nanodot inks for scalable and high-resolution invisible printing. Acta Physico-Chimica Sinica, 2026, 42(3): 100198-0. doi: 10.1016/j.actphy.2025.100198

    4. [4]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    5. [5]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    8. [8]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    9. [9]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    10. [10]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    11. [11]

      Dafa Chen Haiping Xia . From Pollutant to Metal-Centred Annulene: The Transformation Journey of a Little Osmium Atom. University Chemistry, 2025, 40(10): 156-160. doi: 10.12461/PKU.DXHX202508094

    12. [12]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Jianchuan Wang Wei Wu Cunpu Li Zhaohong Zuo Luxi Tan . Exploration on the Construction of Polymer Course Groups in Non-Polymer-Related Majors. University Chemistry, 2026, 41(2): 154-160. doi: 10.12461/PKU.DXHX202502095

    15. [15]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    16. [16]

      Zhiqiang XINGJinling LIUMingmin SULei ZHANGLijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181

    17. [17]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    18. [18]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    19. [19]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    20. [20]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

Metrics
  • PDF Downloads(0)
  • Abstract views(1106)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return