Citation:
ZHANG Lei, ZENG Zhongda, YE Guozhu, ZHAO Chunxia, LU Xin, XU Guowang. Non-targeted metabolomics study for the analysis of chemical compositions in three types of tea by using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry[J]. Chinese Journal of Chromatography,
;2014, 32(8): 804-816.
doi:
10.3724/SP.J.1123.2014.04029
-
Tea is one of the most widely consumed beverages in the world for its benefits to daily life and health. To discover the difference and correlation of chemical compositions in the three typical types of tea, a non-targeted metabolomics method was developed. After the optimization of extraction methods, gas chromatography-time-of-flight mass spectrometry and liquid chromatography-quadrupole time-of-flight mass spectrometry were applied for metabolomics analysis, 1812 and 2608 features were obtained, respectively. By comparing with the known compounds in public and/or commercial databases, 173 compounds were tentatively identified, and 109 of them were experimentally confirmed by standards. Totally, 33 tea samples including 12, 12 and 9 samples of green, oolong and black tea, respectively, were analyzed by using the above two methods. Multivariate analysis, Mann-Whitney U test and hierarchical cluster analysis were used to find and visualize the differential components in the three types of tea. Finally, 90 compounds, which contain catechins, amino acids, organic acids, flavonol glycosides, alkaloids, carbohydrates, lipids, etc, were found with a significant difference among them. This study demonstrates the potentials and power of metabolomics methods to understand the chemical secrets of tea. This should help a lot to optimize the processes of agriculture, storage, preparation and consumption.
-
-
-
[1]
[1] Higdon J V, Frei B. Crit Rev Food Sci Nutr, 2003, 43(1): 89
-
[2]
[2] Tu Y F, Yang X F, Zhang S K, et al. Chinese Journal of Chromatography, 2012, 30(2): 184
- [3]
-
[4]
[4] Fraser K, Harrison S J, Lane G A, et al. Food Chem, 2012, 134(3): 1616
-
[5]
[5] Pierce A R, Graham H N, Glassner S, et al. Anal Chem, 1969, 41(2): 298
- [6]
-
[7]
[7] Zeeb D J, Nelson B C, Albert K, et al. Anal Chem, 2000, 72(20): 5020
-
[8]
[8] Zhao Y, Chen P, Lin L, et al. Food Chem, 2011, 126(3): 1269
-
[9]
[9] Lee M J, Prabhu S, Meng X, et al. Anal Biochem, 2000, 279(2): 164
-
[10]
[10] Fiehn O. Plant Mol Biol, 2002, 48(1/2): 155
-
[11]
[11] Capanoglu E, Beekwilder J, Boyacioglu D, et al. J Agric Food Chem, 2008, 56(3): 964
-
[12]
[12] Griffiths W J, Koal T, Wang Y, et al. Angew Chem Int Ed, 2010, 49(32): 5426
-
[13]
[13] Goodacre R, Vaidyanathan S, Dunn W B, et al. Trends Biotechnol, 2004, 22(5): 245
-
[14]
[14] Ramautar R, Somsen G W, de Jong G J. Electrophoresis, 2013, 34(1): 86
-
[15]
[15] Zhou J, Wang S Y, Chang Y W, et al. Chinese Journal of Chromatography, 2012, 30(10): 1037
-
[16]
[16] Zhou H, Liang J, Lv D, et al. Food Chem, 2013, 138(4): 2390
-
[17]
[17] Sreekumar A, Poisson L M, Rajendiran T M, et al. Nature, 2009, 457(7): 910
-
[18]
[18] Le Gall G, Colquhoun I J, Defernez M. J Agric Food Chem, 2004, 52(4): 692
-
[19]
[19] Pongsuwan W, Fukusaki E, Bamba T, et al. J Agric Food Chem, 2007, 55(2): 231
-
[20]
[20] Xie G, Ye M, Wang Y, et al. J Agric Food Chem, 2009, 57(8): 3046
-
[21]
[21] Ku K M, Choi J N, Kim J, et al. J Agric Food Chem, 2009, 58(1): 418
-
[22]
[22] Lee J E, Lee B J, Chung J O, et al. J Agric Food Chem, 2010, 58(19): 10582
-
[23]
[23] Zhang L, Zeng Z, Zhao C, et al. J Chromatogr A, 2013, 1313: 245
-
[24]
[24] Smith C A, Want E J, OMaille G, et al. Anal Chem, 2006, 78(3): 779
-
[25]
[25] Arbona V, Iglesias D J, Talón M, et al. J Agric Food Chem, 2009, 57(16): 7338
-
[26]
[26] Fraga C G, Clowers B H, Moore R J, et al. Anal Chem, 2010, 82(10): 4165
-
[27]
[27] Wang L, Weller C L. Trends Food Sci Tech, 2006, 17(6): 300
- [28]
-
[29]
[29] Weldegergis B T, Crouch A M, Górecki T, et al. Anal Chim Acta, 2011, 701(1): 98
-
[30]
[30] Zhu Z J, Schultz A W, Wang J, et al. Nat Protoc, 2013, 8(3): 451
-
[31]
[31] Price K R, Rhodes M J C, Barnes K A. J Agric Food Chem, 1998, 46(7): 2517
-
[32]
[32] Nishimura M, Ishiyama K, Watanabe A, et al. J Agric Food Chem, 2007, 55(18): 7252
-
[33]
[33] Chang Y, Zhao C, Wu Z, et al. Electrophoresis, 2012, 33(15): 2399
-
[34]
[34] Chen J, Wang W, Lv S, et al. Anal Chim Acta, 2009, 650(1): 3
-
[35]
[35] Scharbert S, Hofmann T. J Agric Food Chem, 2005, 53(13): 5377
-
[36]
[36] Wang K, Liu F, Liu Z, et al. Int J Food Sci Tech, 2011, 46(7): 1406
-
[37]
[37] Alcázar A, Ballesteros O, Jurado J M, et al. J Agric Food Chem, 2007, 55(15): 5960
- [38]
-
[39]
[39] Lin J K, Lin C L, Liang Y C, et al. J Agric Food Chem, 1998, 46(9): 3635
-
[1]
-
-
-
[1]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[2]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[3]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[4]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[5]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[6]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[7]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[8]
Gaoyan Chen , Chaoyue Wang , Juanjuan Gao , Junke Wang , Yingxiao Zong , Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011
-
[9]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[10]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[11]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[12]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[13]
Haiyang Zhang , Yanzhao Dong , Haojie Li , Ruili Guo , Zhicheng Zhang , Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035
-
[14]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[15]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[16]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[17]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[18]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[19]
Xianfei Chen , Wentao Zhang , Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112
-
[20]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(299)
- HTML views(29)