Citation: ZHANG Lei, ZENG Zhongda, YE Guozhu, ZHAO Chunxia, LU Xin, XU Guowang. Non-targeted metabolomics study for the analysis of chemical compositions in three types of tea by using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry[J]. Chinese Journal of Chromatography, ;2014, 32(8): 804-816. doi: 10.3724/SP.J.1123.2014.04029 shu

Non-targeted metabolomics study for the analysis of chemical compositions in three types of tea by using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry

  • Corresponding author: XU Guowang, 
  • Received Date: 18 April 2014
    Available Online: 20 May 2014

    Fund Project: This work was supported by the project (No. 201210075) from the General Administration of Quality Supervision, Inspection and Quarantine of China, the project (No. 2012CB720801) from the Ministry of Science and Technology of China, the foundation (No. 21175132) (No. 201210075) from the General Administration of Quality Supervision, Inspection and Quarantine of China, the project (No. 2012CB720801) from the Ministry of Science and Technology of China, the foundation (No. 21175132)the creative search group project (No. 21321064) from the National Natural Science Foundation of China. (No. 21321064)

  • Tea is one of the most widely consumed beverages in the world for its benefits to daily life and health. To discover the difference and correlation of chemical compositions in the three typical types of tea, a non-targeted metabolomics method was developed. After the optimization of extraction methods, gas chromatography-time-of-flight mass spectrometry and liquid chromatography-quadrupole time-of-flight mass spectrometry were applied for metabolomics analysis, 1812 and 2608 features were obtained, respectively. By comparing with the known compounds in public and/or commercial databases, 173 compounds were tentatively identified, and 109 of them were experimentally confirmed by standards. Totally, 33 tea samples including 12, 12 and 9 samples of green, oolong and black tea, respectively, were analyzed by using the above two methods. Multivariate analysis, Mann-Whitney U test and hierarchical cluster analysis were used to find and visualize the differential components in the three types of tea. Finally, 90 compounds, which contain catechins, amino acids, organic acids, flavonol glycosides, alkaloids, carbohydrates, lipids, etc, were found with a significant difference among them. This study demonstrates the potentials and power of metabolomics methods to understand the chemical secrets of tea. This should help a lot to optimize the processes of agriculture, storage, preparation and consumption.
  • 加载中
    1. [1]

      [1] Higdon J V, Frei B. Crit Rev Food Sci Nutr, 2003, 43(1): 89  

    2. [2]

      [2] Tu Y F, Yang X F, Zhang S K, et al. Chinese Journal of Chromatography, 2012, 30(2): 184

    3. [3]

      [3] Khan N, Mukhtar H. Life Sci, 2007, 81(7): 519  

    4. [4]

      [4] Fraser K, Harrison S J, Lane G A, et al. Food Chem, 2012, 134(3): 1616  

    5. [5]

      [5] Pierce A R, Graham H N, Glassner S, et al. Anal Chem, 1969, 41(2): 298  

    6. [6]

      [6] Bedner M, Duewer D L. Anal Chem, 2011, 83(16): 6169  

    7. [7]

      [7] Zeeb D J, Nelson B C, Albert K, et al. Anal Chem, 2000, 72(20): 5020  

    8. [8]

      [8] Zhao Y, Chen P, Lin L, et al. Food Chem, 2011, 126(3): 1269  

    9. [9]

      [9] Lee M J, Prabhu S, Meng X, et al. Anal Biochem, 2000, 279(2): 164  

    10. [10]

      [10] Fiehn O. Plant Mol Biol, 2002, 48(1/2): 155

    11. [11]

      [11] Capanoglu E, Beekwilder J, Boyacioglu D, et al. J Agric Food Chem, 2008, 56(3): 964  

    12. [12]

      [12] Griffiths W J, Koal T, Wang Y, et al. Angew Chem Int Ed, 2010, 49(32): 5426  

    13. [13]

      [13] Goodacre R, Vaidyanathan S, Dunn W B, et al. Trends Biotechnol, 2004, 22(5): 245  

    14. [14]

      [14] Ramautar R, Somsen G W, de Jong G J. Electrophoresis, 2013, 34(1): 86  

    15. [15]

      [15] Zhou J, Wang S Y, Chang Y W, et al. Chinese Journal of Chromatography, 2012, 30(10): 1037

    16. [16]

      [16] Zhou H, Liang J, Lv D, et al. Food Chem, 2013, 138(4): 2390  

    17. [17]

      [17] Sreekumar A, Poisson L M, Rajendiran T M, et al. Nature, 2009, 457(7): 910

    18. [18]

      [18] Le Gall G, Colquhoun I J, Defernez M. J Agric Food Chem, 2004, 52(4): 692  

    19. [19]

      [19] Pongsuwan W, Fukusaki E, Bamba T, et al. J Agric Food Chem, 2007, 55(2): 231  

    20. [20]

      [20] Xie G, Ye M, Wang Y, et al. J Agric Food Chem, 2009, 57(8): 3046  

    21. [21]

      [21] Ku K M, Choi J N, Kim J, et al. J Agric Food Chem, 2009, 58(1): 418

    22. [22]

      [22] Lee J E, Lee B J, Chung J O, et al. J Agric Food Chem, 2010, 58(19): 10582  

    23. [23]

      [23] Zhang L, Zeng Z, Zhao C, et al. J Chromatogr A, 2013, 1313: 245  

    24. [24]

      [24] Smith C A, Want E J, OMaille G, et al. Anal Chem, 2006, 78(3): 779  

    25. [25]

      [25] Arbona V, Iglesias D J, Talón M, et al. J Agric Food Chem, 2009, 57(16): 7338  

    26. [26]

      [26] Fraga C G, Clowers B H, Moore R J, et al. Anal Chem, 2010, 82(10): 4165  

    27. [27]

      [27] Wang L, Weller C L. Trends Food Sci Tech, 2006, 17(6): 300  

    28. [28]

      [28] Ali S L. Chromatographia, 1975, 8(1): 33  

    29. [29]

      [29] Weldegergis B T, Crouch A M, Górecki T, et al. Anal Chim Acta, 2011, 701(1): 98  

    30. [30]

      [30] Zhu Z J, Schultz A W, Wang J, et al. Nat Protoc, 2013, 8(3): 451  

    31. [31]

      [31] Price K R, Rhodes M J C, Barnes K A. J Agric Food Chem, 1998, 46(7): 2517  

    32. [32]

      [32] Nishimura M, Ishiyama K, Watanabe A, et al. J Agric Food Chem, 2007, 55(18): 7252  

    33. [33]

      [33] Chang Y, Zhao C, Wu Z, et al. Electrophoresis, 2012, 33(15): 2399  

    34. [34]

      [34] Chen J, Wang W, Lv S, et al. Anal Chim Acta, 2009, 650(1): 3  

    35. [35]

      [35] Scharbert S, Hofmann T. J Agric Food Chem, 2005, 53(13): 5377  

    36. [36]

      [36] Wang K, Liu F, Liu Z, et al. Int J Food Sci Tech, 2011, 46(7): 1406  

    37. [37]

      [37] Alcázar A, Ballesteros O, Jurado J M, et al. J Agric Food Chem, 2007, 55(15): 5960  

    38. [38]

      [38] Zuo Y, Chen H, Deng Y. Talanta, 2002, 57(2): 307  

    39. [39]

      [39] Lin J K, Lin C L, Liang Y C, et al. J Agric Food Chem, 1998, 46(9): 3635  

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    5. [5]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    6. [6]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    11. [11]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    14. [14]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    15. [15]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    20. [20]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

Metrics
  • PDF Downloads(0)
  • Abstract views(299)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return