Citation: CHEN Jiexia, WEI Enze, XIAN Qiming. Pollution status of phenolic compounds in the soil and sediment from a chemical industrial park along the Yangtze River[J]. Chinese Journal of Chromatography, ;2014, 32(8): 843-848. doi: 10.3724/SP.J.1123.2014.03041 shu

Pollution status of phenolic compounds in the soil and sediment from a chemical industrial park along the Yangtze River

  • Corresponding author: XIAN Qiming, 
  • Received Date: 26 March 2014
    Available Online: 21 May 2014

    Fund Project: 国家高技术研究发展计划("863"计划)项目(2013AA06A309). ("863"计划)项目(2013AA06A309)

  • A determination method of 12 phenolic compounds in soil and sediment samples by gas chromatography-mass spectrometry (GC-MS) analysis coupled with accelerated solvent extraction (ASE) and gel permeation chromatography (GPC) for clean-up was developed. The method detection limits (MDLs) varied from 0.410 μg/kg to 13.1 μg/kg (dry weight), and the average recoveries ranged from 70.7% to 122% with the relative standard deviations (RSDs) of 1.2% to 16%. Based on this method, the levels of 12 phenolic compounds were investigated in 17 soil surrounding a chemical industrial park along the Yangtze River and seven sediment samples collected in the river. It was found that 11 of the 12 phenolic compounds were detected in all of the 24 samples, and only hydroquinone was below the MDL. The contents of the total 12 phenolic compounds were 10.16-30.66 mg/kg in the soil and 18.00-29.83 mg/kg in the sediment, with the average contents of 18.26 and 22.51 mg/kg respectively. It showed that 4-nitrophenol, 4-chloro-3-methylphenol, 2-chlorohydroquinone, 2-methyl-4,6-dinitrophenol and 2,4,6-trichlorophenol were five major phenolic contaminants in the soil and sediment in this study. The pollution levels of the 12 phenolic compounds were low in the soil of the chemical industrial park as well as in the sediment of the Yangtze River, which implied a comparatively low risk for the environment.
  • 加载中
    1. [1]

      [1] Gupta V K, Ali I, Saini V K. Envion Sci Technol, 2004, 38(14): 4012  

    2. [2]

      [2] Puig D, Barcelo D. Trends Anal Chem, 1996, 15(8): 362  

    3. [3]

      [3] Zhang W, Wei C H, Peng P A, et al. Chinese Journal of Environmental Engineering (张伟, 韦朝海, 彭平安, 等. 环境工程学报), 2010, 4(2): 254

    4. [4]

      [4] Reid A M, Brougham C A, Fogarty A M, et al. Anal Chim Acta, 2009, 634: 202

    5. [5]

      [5] Deng Q, Zhai L F. Environmental Science and Management (邓琴, 翟丽芬. 环境科学与管理), 2010, 35(8): 84

    6. [6]

      [6] Pei F, Luo Z J, Peng J J, et al. Journal of Environmental Sciences (裴芳, 罗泽娇, 彭进进, 等. 环境科学), 2012, 33(12): 4252

    7. [7]

      [7] Cai Q Y, Huang H J, Lü H X, et al. Journal of Instrumental Analysis (蔡全英, 黄慧娟, 吕辉雄, 等. 分析测试学报), 2012, 31(2): 188

    8. [8]

      [8] Kumar B, Tyagi J, Verma V K, et al. Adv Appl Sci Res, 2014, 5(2): 125

    9. [9]

      [9] Khairy M A. Environ Moni Assess, 2013, 185: 450

    10. [10]

      [10] Zhou Y L. The Administration and Technique of Environmental Monitoring (周艳玲. 环境监测管理与技术), 2011, 23: 70

    11. [11]

      [11] Zhu H B, Yao C Y, Wang L, et al. Journal of Zhejiang University (朱海豹, 姚超英, 汪玲, 等. 浙江大学学报), 2010, 37(2): 197

    12. [12]

      [12] Gui J Y, Zhang L, Chen Z Y, et al. Physical Testing and Chemical Analysis: Chemical Analysis (桂建业, 张莉, 陈宗宇, 等. 理化检验: 化学分册), 2012, 48(4): 424

    13. [13]

      [13] Zhong A G. Applied Acoustics (钟爱国. 应用声学), 2003, 22(3): 17

    14. [14]

      [14] Ng L K, Lafontaine P, Harnois J. J Chromatogr A, 2000, 873: 30

    15. [15]

      [15] Hanada Y, Imaizumi I, Kido K. Anal Sci, 2002, 18: 656

    16. [16]

      [16] Li X, Mou G Q, Chen L J, et al. Chinese Journal of Chromatography (李雪, 牟光庆, 陈历俊, 等. 色谱), 2013, 31(9): 908

    17. [17]

      [17] Yang L L, Wang M F, Hu E Y, et al. Chinese Journal of Chromatography (杨丽莉, 王美飞, 胡恩宇, 等. 色谱), 2013, 31(11): 1081

    18. [18]

      [18] Chao J B, Liu J F, Wen M J, et al. Chinese Journal of Analytical Chemistry (巢静波, 刘景富, 温美娟, 等. 分析化学), 2002, 30(7): 875

    19. [19]

      [19] Zhu X L, Cai J B, Yang J, et al. Chinese Journal of Analytical Chemistry (朱晓兰, 蔡继宝, 杨俊, 等. 分析化学), 2005, 33(6): 821

    20. [20]

      [20] GB 15618-2008

    21. [21]

      [21] HJ 350-2007

    22. [22]

      [22] HJ/T25-1999

    23. [23]

      [23] GB 3838-2002

  • 加载中
    1. [1]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    7. [7]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

    16. [16]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    17. [17]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    20. [20]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

Metrics
  • PDF Downloads(0)
  • Abstract views(497)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return