Citation: GONG Jiadi, CAO Xiaolin, CAO Zhaoyun, BIAN Yingfang, YU Shasha, CHEN Mingxue. Determination of five arsenic species in rice by liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Chromatography, ;2014, 32(7): 717-722. doi: 10.3724/SP.J.1123.2014.03015 shu

Determination of five arsenic species in rice by liquid chromatography-inductively coupled plasma-mass spectrometry

  • Corresponding author: CHEN Mingxue, 
  • Received Date: 12 March 2014
    Available Online: 5 May 2014

    Fund Project: 浙江省重点科技创新团队项目(2012R10028-05). (2012R10028-05)

  • A method was developed for the simultaneous determination of arsenic acid [As (Ⅴ)], arsenious acid [As (Ⅲ)], arsenobetaine (AsB), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in rice by liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS). The extraction reagent was 0.3 mol/L nitric acid with heat-assistant condition for 1.5 h at 95 ℃. Then, the five arsenic species were separated by an anion exchange column (Dionex IonPac AS19, 250 mm×4 mm) and detected by ICP-MS. Four kinds of extracted solutions were compared through the extraction efficiency. The concentration of nitric acid, the temperature and the extraction time were optimized. The recoveries of the five arsenic species spiked in rice at two levels ranged from 89.6% to 99.5% with the relative standard deviations (RSDs, n=5) of 0.6%-3.6%. The measured values of the arsenic species in standard rice materials were consistent with their standard values. The linear ranges were 0.05-200 μg/L for AsB and DMA, 0.10-400 μg/L for As (Ⅲ) and MMA, 0.15-600 μg/L for As (V). The limits of detection for the five arsenic species were 0.15-0.45 μg/kg. The results showed that the method is much more precise for the risk assessment of the rice. This method is simple, accurate and durable for the determination of arsenic species in rice.
  • 加载中
    1. [1]

      [1] Stroud J L, Norton G J, Islam M R. Environ Pollut, 2011, 159: 947  

    2. [2]

      [2] Kim J Y, Kim W I, Kunhikrishnan A, et al. Food Sci Biotechnol, 2013, 22(6): 1509  

    3. [3]

      [3] Arao T, Kawasaki A, Baba K, et al. Environ Sci Technol, 2011, 45(4): 1291  

    4. [4]

      [4] Zheng M Z, Li G, Sun G X, et al. Plant Soil, 2013, 365: 227  

    5. [5]

      [5] GB 2762-2012

    6. [6]

      [6] Brown J L, Kitchin K T, George M. Teratogenesis Carcinog Mutagen, 1997, 17: 71  

    7. [7]

      [7] Watanabe T, Hirano S. Arch Toxicol, 2013, 87(6): 969  

    8. [8]

      [8] Maher W, Foster S, Krikowa F. Environ Sci Technol, 2013, 47: 5821  

    9. [9]

      [9] Huang J H, Ilgen G, Fecher P. J Anal At Spectrom, 2010, 25: 800  

    10. [10]

      [10] Carey A M, Scheckel K G, Lombi E, et al. Plant Physiol, 2010, 152: 309  

    11. [11]

      [11] Raber G, Stock N, Hanel P, et al. Food Chem, 2012, 134: 524  

    12. [12]

      [12] Pan H, Li X W, Gong Z Y, et al. Journal of Wuhan Polytechnic University (潘浩, 李筱薇, 宫智勇, 等. 武汉工业学院学报), 2012, 31(3): 1

    13. [13]

      [13] Yun H X, Zhang L, Li X W, et al. Journal of Hygiene Research (云洪霄, 张磊, 李筱薇, 等. 卫生研究), 2010, 39(3): 316

    14. [14]

      [14] Narukawa T, Chiba K. J Agric Food Chem, 2010, 58: 8183  

    15. [15]

      [15] Juskelis R, Li W X, Nelson J, et al. J Agric Food Chem, 2013, 61: 10670  

    16. [16]

      [16] Paik M K, Kim M J, Kim W I. J Korean Soc Appl Biol Chem, 2010, 53(5): 634  

    17. [17]

      [17] Huang J H, Fecher P, Ilgen G, et al. Food Chem, 2012, 130: 453  

    18. [18]

      [18] GB/T 23372-2009

    19. [19]

      [19] GB/T 5009.11-2003

    20. [20]

      [20] Yang L J, Hu Q R, Guo W, et al. Chinese Journal of Chromatography (杨丽君, 胡巧茹, 郭伟, 等. 色谱), 2011, 29(5): 394  

    21. [21]

      [21] Heitkemper D T, Vela N P, Stewart K R, et al. J Anal At Spectrom, 2001, 16: 299  

    22. [22]

      [22] Yue B, Liu L P, Xie K, et al. Chinese Journal of Food Hygiene (岳兵, 刘丽萍, 谢科, 等. 中国食品卫生杂志), 2013, 25(3): 238

    23. [23]

      [23] Zhang C H, Wang Y, Ge Y. Anal Lett, 2013, 46: 1573  

  • 加载中
    1. [1]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    2. [2]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    5. [5]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    6. [6]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    7. [7]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    8. [8]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    9. [9]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    10. [10]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    11. [11]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    12. [12]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    13. [13]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    14. [14]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    17. [17]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    19. [19]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    20. [20]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

Metrics
  • PDF Downloads(0)
  • Abstract views(495)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return