Citation: HUANG Hehe, ZHANG Jin, XU Dunming, ZHOU Yu, LUO Jia, LV Meiling, CHEN Shubin, WANG Lianzhu. Determination of 21 plant growth regulator residues in fruits by QuEChERS-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, ;2014, 32(7): 707-716. doi: 10.3724/SP.J.1123.2014.03003 shu

Determination of 21 plant growth regulator residues in fruits by QuEChERS-high performance liquid chromatography-tandem mass spectrometry

  • Corresponding author: XU Dunming, 
  • Received Date: 5 March 2014
    Available Online: 17 April 2014

    Fund Project: 福建省自然科学基金项目(2013J01031) (2013J01031)浙江省公益性技术应用研究计划项目(2012C37074). (2012C37074)

  • A method for the simultaneous detection of 21 plant growth regulators in fruits by QuEChERS-high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The samples were initially extracted with acetonitrile containing 1%(v/v) acetic acid, followed by clean-up using the powder of magnesium sulfate and C18. The resulting samples were separated on a C18 column, and detected under positive and negative multiple reactions monitoring (MRM) mode through polarity switching between time segments. The matrix-matched external standard calibration curves were used for quantitative analysis. The linearities of chlormequat chloride, mepiquat chloride, choline chloride, cyclanilide, forchlorfenuron, thidiazuron, inabenfide, paclobutrazol, uniconazole and triapenthenol were in the concentration range of 0.1-500 μg/L, daminozide and 6-benzylaminopurine in the concentration range of 1.0-500 μg/L, 2,3,5-triiodobenzoic acid, 2,4-D, cloprop, 4-chlorophenoxyacetic acid (4-CPA) and trinexapac-ethyl in the concentration range of 2.0-1000 μg/L, abscisic acid (ABA), gibberellic acid (GA3), 1-naphthaleneacetic acid (NAA) and indol-3-ylacetic acid (IAA) in the concentration range of 10-1000 μg/L, with the correlation coefficients higher than 0.990. The limits of detection and the limits of quantification of the method were 0.020-6.0 μg/kg and 0.10-15.0 μg/kg, respectively. For all the samples, the average spiked recoveries ranged from 73.0% to 111.0%, and the relative standard deviations (RSDs, n=6) were in the range of 3.0%-17.2%. The method is quick, easy, effective, sensitive and accurate, and can meet the requirements for the determination of the 21 plant growth regulator residues in fruits.
  • 加载中
    1. [1]

      [1] Giannakoula A E, Ilias I F, Dragisic Maksimovic J J, et al. J Food Compos Anal, 2012, 28(1): 46  

    2. [2]

      [2] Li L, Tian S L. Journal of Anhui Agricutural Science (李莉, 田士林. 安徽农业科学), 2007, 35(23): 7098

    3. [3]

      [3] Wu S R, Chen W F, Zhou X. Plant Physiology Communications (吴颂如, 陈婉芬, 周燮. 植物生理学通讯), 1988(5): 53

    4. [4]

      [4] Santos-Delgado M J, Crespo-Corral E, Polo-Diez L M. Talanta, 2000, 53(2): 367  

    5. [5]

      [5] Zhou Y M, Fu T, Hu R. Food Science (周艳明, 付婷, 胡睿. 食品科学), 2010, 31(12): 178

    6. [6]

      [6] Jia J, Wang X Y, Yang T Z. Chemical Engineer (贾建, 王晓云, 杨天祝. 化学工程师), 2004, 18(7): 57

    7. [7]

      [7] Song Y, Zhang Y H, Huang X, et al. Chinese Journal of Analytical Chemistry (宋莹, 张耀海, 黄霞, 等. 分析化学), 2011, 39(8): 1270

    8. [8]

      [8] Xu Y H, Jiang S, Fu H B, et al. Agrochemicals (徐宜宏, 蒋施, 付海滨, 等. 农药), 2014, 53(2): 113

    9. [9]

      [9] Zhao Y X, Song G L, Zhang J, et al. Chinese Journal of Health Laboratory Technology (赵永信, 宋国良, 张晶, 等. 中国卫生检验杂志), 2008, 18(6): 1064

    10. [10]

      [10] Kuang K, Zhao J L, Ying G G, et al. Journal of Instrumental Analysis (匡科, 赵建亮, 应光国, 等. 分析测试学报), 2008, 27(8): 816

    11. [11]

      [11] Lü Y, Zhao J, Yang T, et al. China Measurement and Test (吕燕, 赵健, 杨挺, 等. 中国测试), 2010, 36(4): 57

    12. [12]

      [12] Lu Y M, Yi G B, Chen C B, et al. Journal of Instrumental Analysis (陆益民, 易国斌, 陈创彬, 等. 分析测试学报), 2011, 30(2): 186

    13. [13]

      [13] Zhang Y, Lu Y, Yang T, et al. Journal of Analytical Science (张莹, 鹿毅, 杨涛, 等. 分析科学学报), 2012, 28(5): 629

    14. [14]

      [14] Zhou J K, Xu P, Yang D X, et al. China Condiment (周建科, 徐鹏, 杨冬霞, 等. 中国调味品), 2011, 36(3): 99

    15. [15]

      [15] Dong S Y, Hu Q, Li J, et al. Chinese Journal of Analysis Laboratory (董社英, 胡清, 李靖, 等. 分析试验室), 2013, 32(8): 48

    16. [16]

      [16] Mol H G J, Van Dam R C J, Vreeken R J, et al. J Chromatogr A, 1999, 833(1): 53  

    17. [17]

      [17] Esparza X, Moyano E, Galceran M T. J Chromatogr A, 2009, 1216: 4402  

    18. [18]

      [18] Riediker S, Obrist H, Varga N, et al. J Chromatogr A, 2002, 966(1): 15

    19. [19]

      [19] Ma L Y, Zhang H Y, Xu W T, et al. Food Anal Methods, 2013, 6(3): 941  

    20. [20]

      [20] Mou Y L, Guo D H, Ding Z P. Chinese Journal of Chromatography (牟艳莉, 郭德华, 丁卓平. 色谱), 2013, 31(10): 1016

    21. [21]

      [21] Zhang J, Du P. Chinese Journal of Chromatography (张军, 杜平. 色谱), 2011, 29(11): 1133

    22. [22]

      [22] Xie W, Shi Y Z, Hou J B, et al. Chinese Journal of Chromatography (谢文, 史颖珠, 侯建波, 等. 色谱), 2014, 32(2): 179

    23. [23]

      [23] Zhou X, Xu J G, Chen Z D, et al. Chinese Journal of Chromatography (周旭, 许锦钢, 陈智栋, 等. 色谱), 2011, 29(3): 244  

    24. [24]

      [24] Huang B Y, Xiao Z Y, Chen D, et al. Pesticide Science and Administration (黄宝勇, 肖志勇, 陈丹, 等. 农药科学与管理), 2010, 31(3): 39

  • 加载中
    1. [1]

      Yahui Ma Leiyang Lv . Pears on the Journey of Fruits. University Chemistry, 2024, 39(9): 64-73. doi: 10.12461/PKU.DXHX202404029

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    6. [6]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    7. [7]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    8. [8]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    10. [10]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    11. [11]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    12. [12]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    13. [13]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    14. [14]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    15. [15]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    16. [16]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    19. [19]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-0. doi: 10.3866/PKU.WHXB202408007

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(0)
  • Abstract views(475)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return