Citation: GAO Meng, WANG Yuesheng, WEI Huizhen, OUYANG Hui, HE Mingzhen, ZENG Lianqing, SHEN Fengyun, GUO Qiang, RAO Yi. Qualitative and quantitative analysis of amygdalin and its metabolite prunasin in plasma by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, ;2014, 32(6): 591-599. doi: 10.3724/SP.J.1123.2014.01021 shu

Qualitative and quantitative analysis of amygdalin and its metabolite prunasin in plasma by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry

  • Corresponding author: RAO Yi, 
  • Received Date: 13 January 2014
    Available Online: 14 March 2014

    Fund Project: 国家重点基础研究发展计划(“973”计划)项目(2010CB530602). (“973”计划)项目(2010CB530602)

  • A method was developed for the determination of amygdalin and its metabolite prunasin in rat plasma after intragastric administration of Maxing shigan decoction. The analytes were identified by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the qualitative analysis of amygdalin and prunasin in the plasma sample was performed on a Shim-pack XR-ODS Ⅲ HPLC column(75 mm×2.0 mm, 1.6 μm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on a Triple TOF 5600 quadrupole time of flight mass spectrometer. The quantitative analysis of amygdalin and prunasin in the plasma sample was performed by separation on an Agilent C18 HPLC column (50 mm×2.1 mm, 1.7 μm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on an AB Q-TRAP 4500 triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The qualitative analysis results showed that amygdalin and its metabolite prunasin were detected in the plasma sample. The quantitative analysis results showed that the linear range of amygdalin was 1.05-4200 ng/mL with the correlation coefficient of 0.9990 and the linear range of prunasin was 1.25-2490 ng/mL with the correlation coefficient of 0.9970. The method had a good precision with the relative standard deviations (RSDs) lower than 9.20% and the overall recoveries varied from 82.33% to 95.25%. The limits of detection (LODs) of amygdalin and prunasin were 0.50 ng/mL. With good reproducibility, the method is simple, fast and effective for the qualitative and quantitative analysis of the amygdalin and prunasin in plasma sample of rats which were administered by Maxing shigan decoction.
  • 加载中
    1. [1]

      [1] National Pharmacopoeia Committee. Chinese Pharmacopoeia: Part 1. Beijing: China Medical Science Press (国家药典委员会. 中国药典: 一部. 北京: 中国医药科技出版社), 2010: 187

    2. [2]

      [2] Lü J Z, Deng J G. Drugs & Clinic (吕建珍, 邓家刚. 现代药物与临床), 2012, 27(5): 530

    3. [3]

      [3] Chen N, Liang R. Academic Journal of Guangdong College of Pharmacy (陈娜, 梁仁. 广东药学院学报), 2004, 20(5): 545

    4. [4]

      [4] Xin Y, Pi Z F, Song F R, et al. Chinese Journal of Chromatography (辛杨, 皮子凤, 宋凤瑞, 等. 色谱), 2011, 29(5): 389  

    5. [5]

      [5] Zhang L, Zhang F C, Wang Z H, et al. Chinese Journal of Chromatography (张琳, 张福成, 王朝虹, 等. 色谱), 2013, 31(9): 898

    6. [6]

      [6] Zhang P P, Zhang F C, Wang Z H, et al. Chinese Journal of Chromatography (张盼盼, 张福成, 王朝虹, 等. 色谱), 2013, 31(3): 211  

    7. [7]

      [7] Ge B Y, Chen H X, Han F M, et al. J Chromatogr B, 2007, 857: 281  

    8. [8]

      [8] Li X B, Liu C H, Zhang R, et al. J Chromatogr Sci, DOI: 10.1093/chromsci/bmt063

    9. [9]

      [9] Wen X D, Liu E H, Yang J, et al. Journal of Pharmaceutical and Biomedical Analysis, 2012, 67: 114

    10. [10]

      [10] Ma C H, Qian Y F, Fan X S, et al. J Chromatogr Sci, DOI: 10.1093/chromsci/bmt026

    11. [11]

      [11] Zhu K J, Sun X P, Chang X J, et al. China Journal of Chinese Materia Medica (朱克近, 孙晓萍, 常秀娟, 等. 中国实验方剂学杂志), 2011, 36(8): 1015

    12. [12]

      [12] Fu Z L, Zheng X H, Fang M F. Chinese Traditional Patent Medicine (付志玲, 郑晓晖, 房敏峰. 中成药), 2011, 33(7): 1202

    13. [13]

      [13] Fang M F, Fu Z L, Wang Q L, et al. Chinese Journal of Experimental Traditional Medical Formulae (房敏峰, 付志玲, 王启林, 等. 中国实验方剂学杂志), 2011, 17(11): 132

    14. [14]

      [14] Fang M F, Fu Z L, Wang Q L, et al. China Journal of Chinese Materia Medica (房敏峰, 付志玲, 王启林, 等. 中国中药杂志), 2010, 35(20): 2684

    15. [15]

      [15] Ma J, Liang Q D, Gao Y, et al. Pharm J Chin PLA(马靖, 梁乾德, 高月, 等. 解放军药学学报), 2011, 27(5): 410

    16. [16]

      [16] Li L, Lu F G, Xiong X Y, et al. Acta Chinese Medicine and Pharmacology (李玲, 卢芳国, 熊兴耀, 等. 中医药学报), 2010, 38(2): 25

    17. [17]

      [17] Huang F, Tong X Y, Zhang R H, et al. Chinese Traditional Patent Medicine (黄丰, 童晓云, 张荣华, 等. 中成药), 2008, 30(11): 1582

    18. [18]

      [18] Chen Q. Train of Thought about Chinese Medicine Research on Pharmacodynamics. 2nd ed. Beijing: People's Medical Publishing House (陈奇. 中药药效研究思路与方法. 2版. 北京: 人民卫生出版社), 2007: 17

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    6. [6]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    7. [7]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    8. [8]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    9. [9]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    10. [10]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    11. [11]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    12. [12]

      Zihan ChengKai JiangJun JiangHenggang WangHengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169

    13. [13]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    14. [14]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    15. [15]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    16. [16]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    17. [17]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    18. [18]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    19. [19]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(0)
  • Abstract views(584)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return