Citation: GAO Meng, WANG Yuesheng, WEI Huizhen, OUYANG Hui, HE Mingzhen, ZENG Lianqing, SHEN Fengyun, GUO Qiang, RAO Yi. Qualitative and quantitative analysis of amygdalin and its metabolite prunasin in plasma by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, ;2014, 32(6): 591-599. doi: 10.3724/SP.J.1123.2014.01021 shu

Qualitative and quantitative analysis of amygdalin and its metabolite prunasin in plasma by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry

  • Corresponding author: RAO Yi, 
  • Received Date: 13 January 2014
    Available Online: 14 March 2014

    Fund Project: 国家重点基础研究发展计划(“973”计划)项目(2010CB530602). (“973”计划)项目(2010CB530602)

  • A method was developed for the determination of amygdalin and its metabolite prunasin in rat plasma after intragastric administration of Maxing shigan decoction. The analytes were identified by ultra-high performance liquid chromatography-tandem quadrupole time of flight mass spectrometry and quantitatively determined by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry. After purified by liquid-liquid extraction, the qualitative analysis of amygdalin and prunasin in the plasma sample was performed on a Shim-pack XR-ODS Ⅲ HPLC column(75 mm×2.0 mm, 1.6 μm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on a Triple TOF 5600 quadrupole time of flight mass spectrometer. The quantitative analysis of amygdalin and prunasin in the plasma sample was performed by separation on an Agilent C18 HPLC column (50 mm×2.1 mm, 1.7 μm), using acetonitrile-0.1% (v/v) formic acid aqueous solution. The detection was performed on an AB Q-TRAP 4500 triple quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operated in negative ion mode and multiple-reaction monitoring (MRM) mode. The qualitative analysis results showed that amygdalin and its metabolite prunasin were detected in the plasma sample. The quantitative analysis results showed that the linear range of amygdalin was 1.05-4200 ng/mL with the correlation coefficient of 0.9990 and the linear range of prunasin was 1.25-2490 ng/mL with the correlation coefficient of 0.9970. The method had a good precision with the relative standard deviations (RSDs) lower than 9.20% and the overall recoveries varied from 82.33% to 95.25%. The limits of detection (LODs) of amygdalin and prunasin were 0.50 ng/mL. With good reproducibility, the method is simple, fast and effective for the qualitative and quantitative analysis of the amygdalin and prunasin in plasma sample of rats which were administered by Maxing shigan decoction.
  • 加载中
    1. [1]

      [1] National Pharmacopoeia Committee. Chinese Pharmacopoeia: Part 1. Beijing: China Medical Science Press (国家药典委员会. 中国药典: 一部. 北京: 中国医药科技出版社), 2010: 187

    2. [2]

      [2] Lü J Z, Deng J G. Drugs & Clinic (吕建珍, 邓家刚. 现代药物与临床), 2012, 27(5): 530

    3. [3]

      [3] Chen N, Liang R. Academic Journal of Guangdong College of Pharmacy (陈娜, 梁仁. 广东药学院学报), 2004, 20(5): 545

    4. [4]

      [4] Xin Y, Pi Z F, Song F R, et al. Chinese Journal of Chromatography (辛杨, 皮子凤, 宋凤瑞, 等. 色谱), 2011, 29(5): 389  

    5. [5]

      [5] Zhang L, Zhang F C, Wang Z H, et al. Chinese Journal of Chromatography (张琳, 张福成, 王朝虹, 等. 色谱), 2013, 31(9): 898

    6. [6]

      [6] Zhang P P, Zhang F C, Wang Z H, et al. Chinese Journal of Chromatography (张盼盼, 张福成, 王朝虹, 等. 色谱), 2013, 31(3): 211  

    7. [7]

      [7] Ge B Y, Chen H X, Han F M, et al. J Chromatogr B, 2007, 857: 281  

    8. [8]

      [8] Li X B, Liu C H, Zhang R, et al. J Chromatogr Sci, DOI: 10.1093/chromsci/bmt063

    9. [9]

      [9] Wen X D, Liu E H, Yang J, et al. Journal of Pharmaceutical and Biomedical Analysis, 2012, 67: 114

    10. [10]

      [10] Ma C H, Qian Y F, Fan X S, et al. J Chromatogr Sci, DOI: 10.1093/chromsci/bmt026

    11. [11]

      [11] Zhu K J, Sun X P, Chang X J, et al. China Journal of Chinese Materia Medica (朱克近, 孙晓萍, 常秀娟, 等. 中国实验方剂学杂志), 2011, 36(8): 1015

    12. [12]

      [12] Fu Z L, Zheng X H, Fang M F. Chinese Traditional Patent Medicine (付志玲, 郑晓晖, 房敏峰. 中成药), 2011, 33(7): 1202

    13. [13]

      [13] Fang M F, Fu Z L, Wang Q L, et al. Chinese Journal of Experimental Traditional Medical Formulae (房敏峰, 付志玲, 王启林, 等. 中国实验方剂学杂志), 2011, 17(11): 132

    14. [14]

      [14] Fang M F, Fu Z L, Wang Q L, et al. China Journal of Chinese Materia Medica (房敏峰, 付志玲, 王启林, 等. 中国中药杂志), 2010, 35(20): 2684

    15. [15]

      [15] Ma J, Liang Q D, Gao Y, et al. Pharm J Chin PLA(马靖, 梁乾德, 高月, 等. 解放军药学学报), 2011, 27(5): 410

    16. [16]

      [16] Li L, Lu F G, Xiong X Y, et al. Acta Chinese Medicine and Pharmacology (李玲, 卢芳国, 熊兴耀, 等. 中医药学报), 2010, 38(2): 25

    17. [17]

      [17] Huang F, Tong X Y, Zhang R H, et al. Chinese Traditional Patent Medicine (黄丰, 童晓云, 张荣华, 等. 中成药), 2008, 30(11): 1582

    18. [18]

      [18] Chen Q. Train of Thought about Chinese Medicine Research on Pharmacodynamics. 2nd ed. Beijing: People's Medical Publishing House (陈奇. 中药药效研究思路与方法. 2版. 北京: 人民卫生出版社), 2007: 17

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    6. [6]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    7. [7]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    12. [12]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    13. [13]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    16. [16]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(0)
  • Abstract views(335)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return