Citation: SHAN Yichu, ZHANG Lihua, ZHANG Yukui. Advances and applications of selective reaction monitoring technology in proteomics study[J]. Chinese Journal of Chromatography, ;2014, 32(4): 330-335. doi: 10.3724/SP.J.1123.2013.12019 shu

Advances and applications of selective reaction monitoring technology in proteomics study

  • Corresponding author: ZHANG Lihua, 
  • Received Date: 18 December 2013
    Available Online: 9 January 2014

    Fund Project: 国家重大科学计划“蛋白质定量新方法及相关技术研究”项目(2012CB910604). (2012CB910604)

  • As an important technology for targeted protein analysis, selective reaction monitoring technology (SRM) improves the detection sensitivity and quantification accuracy by eliminating the interference of impurities and co-eluting peptides by selective detection of specific mother ions and daughter ions. It has been widely applied to the quantitative proteomics study due to the advantages of high selectivity, excellent reproducibility, high sensitivity and wide dynamic range and plays an important role in the area of life science. For the quantitative analysis of the complex samples with wide dynamic range, the throughput of analysis and detection sensitivity still need to be improved. Moreover, various quantification strategies have been proposed to improve the accuracy and precision of quantification. Furthermore, data processing becomes more and more important with the application of SRM technology to the analysis of complex samples. In this work, the recent development of SRM technology is reviewed from the above mentioned aspects. Since SRM technology gains wider applications along with the technological development, its applications in the area of proteomics quantitative study including biomarker validation, post-translational proteomics study (phosphorylation, glycosation, acetylation and so on), biotechnology and signaling pathway analysis are briefly described. Finally, the future developments, applications and outlook of SRM technology are described.
  • 加载中
    1. [1]

      [1] Gallien S, Duriez E, Domon B J. Mass Spectrom, 2011, 46(3): 298  

    2. [2]

      [2] Kiyonami R, Schoen A, Prakash A, et al. Mol Cell Proteomics, 2011, 10(2), DOI: 10.1074/mcp. M110.002931

    3. [3]

      [3] Mao X L, Wei J Y, Niu M, et al. Chinese Journal of Chromatography (毛心丽, 卫军营, 牛明, 等. 色谱), 2012, 30(2): 170

    4. [4]

      [4] Gillet L C, Navarro P, Tate S, et al. Mol Cell Proteomics, 2012, 11(6), DOI: 10.1074/mcp. O111.016717

    5. [5]

      [5] Whiteaker J R, Zhao L, Abbatiello S E, et al. Mol Cell Proteomics, 2011, 10(4), DOI: 10.1074/mcp. M110.005645

    6. [6]

      [6] Hossain M, Kaleta D T, Robinson E W, et al. Mol Cell Proteomics, 2011, 10(2), DOI: 10.1074/mcp. M000062-MCP201

    7. [7]

      [7] Rafalko A, Dai S J, Hancock W S, et al. J Proteome Res, 2012, 11(2): 808  

    8. [8]

      [8] Choi S, Kim J, Yea K, et al. Anal Biochem, 2010, 401: 196  

    9. [9]

      [9] Picotti P, Bodenmiller B, Mueller L N, et al. Cell, 2009, 138: 795  

    10. [10]

      [10] Jovanovic M, Reiter L, Picotti P, et al. Nat Methods, 2010, 7: 837  

    11. [11]

      [11] Zhao Y, Jia W, Sun W, et al. J Proteome Res, 2010, 9: 3319  

    12. [12]

      [12] Zhang H X, Liu Q F, Zimmerman L J, et al. Mol Cell Proteomics, 2011, 10(6), DOI: 10.1074/mcp. M110.006593

    13. [13]

      [13] Huillet C, Adrait A, Lebert D, et al. Mol Cell Proteomics, 2012, 11(2), DOI: 10.1074/mcp. M111.008235

    14. [14]

      [14] Reiter L, Rinner O, Picotti P, et al. Nat Methods, 2011, 8(5): 430  

    15. [15]

      [15] Brusniak M Y K, Kwok S T, Christiansen M, et al. BMC Bioinformatics, 2011, 12: 78  

    16. [16]

      [16] Cham J A, Bianco L, Barton C, et al. J Proteome Res, 2010, 9(1): 620  

    17. [17]

      [17] Huttenhain R, Surinova S, Ossola R, et al. Mol Cell Proteomics, 2013, 12(4): 1005  

    18. [18]

      [18] Lehnert S, Jesse S, Rist W, et al. Exp Neurol, 2012, 234(2): 499  

    19. [19]

      [19] Wang Q, Chaerkady R, Wu J A, et al. P Natl Acad Sci USA, 2011, 108(6): 2444  

    20. [20]

      [20] Hüttenhain R, Soste M, Selevsek N, et al. Sci Transl Med, 2012, 4(142): 142ra97

    21. [21]

      [21] Percy A J, Chambers A G, Yang J, et al. Biochim Biophys Acta, 2013, DOI: 10.1016/j. bbapap.2013.06.008

    22. [22]

      [22] Tang H Y, Beer L A, Barnhart K T, et al. J Proteome Res, 2011, 10(9): 4005  

    23. [23]

      [23] Tang H Y, Beer L A, Chang-Wong T, et al. J Proteome Res, 2012, 11(2): 678  

    24. [24]

      [24] Thingholm T E, Bak S, Beck-Nielsen H, et al. Mol Cell Proteomics, 2011, 10(9), DOI: 10.1074/mcp. M110. 006650

    25. [25]

      [25] IJsselstijn L, Dekker L J, Koudstaal P J, et al. J Proteome Res, 2011, 10(4): 2006  

    26. [26]

      [26] Thambisetty M, Simmons A, Velayudhan L, et al. Arch Gen Psychiatry, 2010, 67(7): 739  

    27. [27]

      [27] Pannee J, Portelius E, Oppermann M, et al. J Alzheimers Dis, 2013, 33(4): 1021

    28. [28]

      [28] Elschenbroich S, Ignatchenko V, Clarke B, et al. J Proteome Res, 2011, 10(5): 2286  

    29. [29]

      [29] Addona T A, Shi X, Keshishian H, et al. Nat Biotechnol, 2011, 29(7): 635  

    30. [30]

      [30] Eissler C L, Bremmer S C, Martinez J S, et al. Anal Biochem, 2011, 418(2): 267  

    31. [31]

      [31] Zhao Y, Jia W, Wang J F, et al. Anal Chem, 2011, 83(22): 8802  

    32. [32]

      [32] Zhang K L, Schrag M, Crofton A, et al. Proteomics, 2012, 12(8): 1261  

    33. [33]

      [33] Redding-Johanson A M, Batth T S, Chan R, et al. Metab Eng, 2011, 13(2): 194  

    34. [34]

      [34] Pandhal J, Ow S Y, Noirel J, et al. Biotechnol Bioeng, 2011, 108(4): 902  

    35. [35]

      [35] Zhao Y X, Brasier A R. Methods, 2013, 61(3): 313  

    36. [36]

      [36] Zhao Y X, Tian B, Edeh C B, et al. Mol Cell Proteomics, 2013, 12(6), DOI: 10.1074/mcp. M112.023465

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    4. [4]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    5. [5]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

Metrics
  • PDF Downloads(0)
  • Abstract views(224)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return