Citation:
SHAN Yichu, ZHANG Lihua, ZHANG Yukui. Advances and applications of selective reaction monitoring technology in proteomics study[J]. Chinese Journal of Chromatography,
;2014, 32(4): 330-335.
doi:
10.3724/SP.J.1123.2013.12019
-
As an important technology for targeted protein analysis, selective reaction monitoring technology (SRM) improves the detection sensitivity and quantification accuracy by eliminating the interference of impurities and co-eluting peptides by selective detection of specific mother ions and daughter ions. It has been widely applied to the quantitative proteomics study due to the advantages of high selectivity, excellent reproducibility, high sensitivity and wide dynamic range and plays an important role in the area of life science. For the quantitative analysis of the complex samples with wide dynamic range, the throughput of analysis and detection sensitivity still need to be improved. Moreover, various quantification strategies have been proposed to improve the accuracy and precision of quantification. Furthermore, data processing becomes more and more important with the application of SRM technology to the analysis of complex samples. In this work, the recent development of SRM technology is reviewed from the above mentioned aspects. Since SRM technology gains wider applications along with the technological development, its applications in the area of proteomics quantitative study including biomarker validation, post-translational proteomics study (phosphorylation, glycosation, acetylation and so on), biotechnology and signaling pathway analysis are briefly described. Finally, the future developments, applications and outlook of SRM technology are described.
-
-
-
[1]
[1] Gallien S, Duriez E, Domon B J. Mass Spectrom, 2011, 46(3): 298
-
[2]
[2] Kiyonami R, Schoen A, Prakash A, et al. Mol Cell Proteomics, 2011, 10(2), DOI: 10.1074/mcp. M110.002931
- [3]
-
[4]
[4] Gillet L C, Navarro P, Tate S, et al. Mol Cell Proteomics, 2012, 11(6), DOI: 10.1074/mcp. O111.016717
-
[5]
[5] Whiteaker J R, Zhao L, Abbatiello S E, et al. Mol Cell Proteomics, 2011, 10(4), DOI: 10.1074/mcp. M110.005645
-
[6]
[6] Hossain M, Kaleta D T, Robinson E W, et al. Mol Cell Proteomics, 2011, 10(2), DOI: 10.1074/mcp. M000062-MCP201
-
[7]
[7] Rafalko A, Dai S J, Hancock W S, et al. J Proteome Res, 2012, 11(2): 808
-
[8]
[8] Choi S, Kim J, Yea K, et al. Anal Biochem, 2010, 401: 196
-
[9]
[9] Picotti P, Bodenmiller B, Mueller L N, et al. Cell, 2009, 138: 795
-
[10]
[10] Jovanovic M, Reiter L, Picotti P, et al. Nat Methods, 2010, 7: 837
-
[11]
[11] Zhao Y, Jia W, Sun W, et al. J Proteome Res, 2010, 9: 3319
-
[12]
[12] Zhang H X, Liu Q F, Zimmerman L J, et al. Mol Cell Proteomics, 2011, 10(6), DOI: 10.1074/mcp. M110.006593
-
[13]
[13] Huillet C, Adrait A, Lebert D, et al. Mol Cell Proteomics, 2012, 11(2), DOI: 10.1074/mcp. M111.008235
-
[14]
[14] Reiter L, Rinner O, Picotti P, et al. Nat Methods, 2011, 8(5): 430
-
[15]
[15] Brusniak M Y K, Kwok S T, Christiansen M, et al. BMC Bioinformatics, 2011, 12: 78
-
[16]
[16] Cham J A, Bianco L, Barton C, et al. J Proteome Res, 2010, 9(1): 620
-
[17]
[17] Huttenhain R, Surinova S, Ossola R, et al. Mol Cell Proteomics, 2013, 12(4): 1005
-
[18]
[18] Lehnert S, Jesse S, Rist W, et al. Exp Neurol, 2012, 234(2): 499
-
[19]
[19] Wang Q, Chaerkady R, Wu J A, et al. P Natl Acad Sci USA, 2011, 108(6): 2444
-
[20]
[20] Hüttenhain R, Soste M, Selevsek N, et al. Sci Transl Med, 2012, 4(142): 142ra97
-
[21]
[21] Percy A J, Chambers A G, Yang J, et al. Biochim Biophys Acta, 2013, DOI: 10.1016/j. bbapap.2013.06.008
-
[22]
[22] Tang H Y, Beer L A, Barnhart K T, et al. J Proteome Res, 2011, 10(9): 4005
-
[23]
[23] Tang H Y, Beer L A, Chang-Wong T, et al. J Proteome Res, 2012, 11(2): 678
-
[24]
[24] Thingholm T E, Bak S, Beck-Nielsen H, et al. Mol Cell Proteomics, 2011, 10(9), DOI: 10.1074/mcp. M110. 006650
-
[25]
[25] IJsselstijn L, Dekker L J, Koudstaal P J, et al. J Proteome Res, 2011, 10(4): 2006
-
[26]
[26] Thambisetty M, Simmons A, Velayudhan L, et al. Arch Gen Psychiatry, 2010, 67(7): 739
-
[27]
[27] Pannee J, Portelius E, Oppermann M, et al. J Alzheimers Dis, 2013, 33(4): 1021
-
[28]
[28] Elschenbroich S, Ignatchenko V, Clarke B, et al. J Proteome Res, 2011, 10(5): 2286
-
[29]
[29] Addona T A, Shi X, Keshishian H, et al. Nat Biotechnol, 2011, 29(7): 635
-
[30]
[30] Eissler C L, Bremmer S C, Martinez J S, et al. Anal Biochem, 2011, 418(2): 267
-
[31]
[31] Zhao Y, Jia W, Wang J F, et al. Anal Chem, 2011, 83(22): 8802
-
[32]
[32] Zhang K L, Schrag M, Crofton A, et al. Proteomics, 2012, 12(8): 1261
-
[33]
[33] Redding-Johanson A M, Batth T S, Chan R, et al. Metab Eng, 2011, 13(2): 194
-
[34]
[34] Pandhal J, Ow S Y, Noirel J, et al. Biotechnol Bioeng, 2011, 108(4): 902
- [35]
-
[36]
[36] Zhao Y X, Tian B, Edeh C B, et al. Mol Cell Proteomics, 2013, 12(6), DOI: 10.1074/mcp. M112.023465
-
[1]
-
-
-
[1]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[2]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[3]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[4]
Ling Bai , Limin Lu , Xiaoqiang Wang , Dongping Wu , Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101
-
[5]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[6]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[7]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[8]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[9]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[10]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[11]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[12]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[13]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[14]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[15]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[16]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[17]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[18]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[19]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[20]
Jia Huo , Jia Li , Yongjun Li , Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(225)
- HTML views(42)