Citation:
SUN Jianzhi, HE Hui, LIU Shuhui. Determination of three chlorophenols in red wine by sweeping-micellar electrokinetic chromatography coupled with dispersive liquid-liquid microextraction and reversed phase liquid-liquid microextraction[J]. Chinese Journal of Chromatography,
;2014, 32(3): 256-262.
doi:
10.3724/SP.J.1123.2013.11004
-
A method of dispersive liquid-liquid microextraction (DLLME) and reversed phase liquid-liquid microextraction (RP-LLME) procedures coupled with sweeping-micellar electrokinetic chromatography (sweeping-MEKC) was established to extract and determine the three chlorophenols (CPs) including pentachlorophenol (PCP), 2,4,6-trichlorophenol (TCP) and 2,4-dichlorophenol (DCP) in red wine. The influences of the parameters of two extraction steps and the electrophoresis conditions were investigated. The optimum extraction conditions were as follows: for DLLME, 3.5 mL red wine sample (pH 3.0, 120 g/L NaCl), 300 μL hexane (extraction solvent), extraction for 3 min, centrifugation for 3 min at 5000 r/min; for RP-LLME, 25 μL 0.16 mol/L NaOH solution, extraction for 2 min, centrifugation for 2 min at 5000 r/min. The optimum running buffer (pH 2.3) was an aqueous solution containing 25 mmol/L NaH2PO4, 100 mmol/L sodium dodecyl sulfate (SDS) and 30% (v/v) acetonitrile. The optimum on-line concentration conditions were as follows: sample matrix, 80 mmol/L NaH2PO4; hydrodynamic injection of 20 s at 20.67 kPa (3 psi). Under the optimum conditions, the excellent linearity was obtained over the range of 0.5-100 μg/L (r≥0.9910) for PCP and TCP, and 1.5-80 μg/L (r≥0.9851) for DCP. The limits of detection (S/N=3) were in the range of 0.035-0.114 μg/L. The average recoveries were in the range of 75.2%-104.7% with the relative standard deviations (RSDs) not more than 6.17%. The results indicated that the proposed method may find wide applications for the determination of trace CPs in various sample matrixes and other weak acidic organic contaminants.
-
-
-
[1]
[1] Morales S, Canosa P, Rodriguez I, et al. J Chromatogr A, 2005, 1082(2): 128

-
[2]
[2] Padilla-Sanchez J A, Plaza-Bolanos P, Romero-Gonzalez R, et al. J Chromatogr A, 2010, 1217(14): 5724
-
[3]
[3] Gao X J, Zhang Y, Sun S P. Chinese Journal of Health Laboratory Technology (高学杰, 张毅, 孙仕萍. 中国卫生检验杂质), 2011, 21(5): 1098
-
[4]
[4] Campillo N, Vinas P, Cacho J I, et al. J Chromatogr A, 2010, 1217(47): 7323

-
[5]
[5] Pizarro C, Saenz-Gonzalez C, Perez-del-Notario N, et al. J Chromatogr A, 2010, 1217(49): 7630

- [6]
-
[7]
[7] Ying L C, Ouyang W H. Industrial Water & Wastewater (应立春, 欧阳文华. 工业用水与废水), 2013, 44(4): 86
-
[8]
[8] Minuti L, Pellegrino R M, Tesei I. J Chromatogr A, 2006, 1114(2): 263

- [9]
-
[10]
[10] Ho T T, Chen C Y, Li Z G, et al. Anal Chim Acta, 2012, 712: 72

-
[11]
[11] Holopainen S, Luukkonen V, Nousiainen M, et al. Talanta, 2013, 114: 176

-
[12]
[12] Rezaee M, Assadi Y, Hosseini M M, et al. J Chromatogr A, 2006, 1116(1/2): 1
-
[13]
[13] Hashemi P, Raeisi F, Ghiasvand A R, et al. Talanta, 2010, 80(5): 1926

-
[14]
[14] Xiao C Q, Tang M Q, Li J, et al. J Chromatogr B, 2013, 931(15): 111
-
[15]
[15] Hadjmohammadi M R, Fatemi M H, Shakeri P. J Sep Sci, 2012, 35(1): 3375
-
[16]
[16] Moradi M, Yamini Y, Esrafili A, et al. Talanta, 2010, 82(5): 1864

-
[17]
[17] Us M F, Alshana U, Lubbad I, et al. Electrophoresis, 2013, 34(6): 854

-
[18]
[18] Monton M R N, Imami K, Nakanishi M, et al. J Chromatogr A, 2005, 1079(1/2): 266
-
[19]
[19] Zhang S H, Yang X M, Yin X F, et al. Food Chem, 2013, 133(2): 544
-
[20]
[20] Liu S Q, Wang H L. Chinese Journal of Chromatography (刘胜权, 汪海林. 色谱), 2011, 29(9): 816
- [21]
-
[22]
[22] Dawod M, Breadmore M C, Guijt R M, et al. J Chromatogr A, 2010, 1217(3): 386

-
[23]
[23] Li D L, Guo Y Y, Chang Z X, et al. J Chem Eng Data, 2013 58(3): 731
-
[24]
[24] Galan-Cano F, Lucena R, Cardenas S, et al. J Chromatogr A, 2012, 1229(16): 48
-
[25]
[25] Li X Y, Xue A F, Chen H, et al. J Chromatogr A, 2013, 1280(1): 9
-
[26]
[26] Morais P D, Stoichev T, Basto M P, et al. Talanta, 2012, 89(1): 1
-
[27]
[27] Zhou C H, Tong S S, Chang Y X, et al. Electrophoresis, 2012, 33(8): 1331

-
[28]
[28] Liang T T, Lv Z H, Jiang T F, et al. Electrophoresis, 2013, 34(3): 345

-
[29]
[29] GB 5749-2006
-
[1]
-
-
-
[1]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[2]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[3]
Yifan Xie , Liyun Yao , Ruolin Yang , Yuxing Cai , Yujie Jin , Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133
-
[4]
Yujing Chen , Hongqun Ouyang , Dan Zhao , Yanyan Chu , Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120
-
[5]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
-
[6]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[7]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[8]
Hao Chen , Dongyue Yang , Gang Huang , Xinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059
-
[9]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[10]
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034
-
[11]
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053
-
[12]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036
-
[13]
Lingyu Chang , Yanfang Lang , Yuyan Zhu , Jie Wang , Ying Guo , Die Wang , Peng Ding , Yueming Zhou , Zhixiang Gong , Shujuan Liu . Machine Learning-Optimized Microcolumn Ion Exchange Chromatography for Trace Arsenic Determination. University Chemistry, 2026, 41(1): 76-84. doi: 10.12461/PKU.DXHX202506023
-
[14]
Chang Guo , Haipeng Yang , Hui Fang , Yingguo Zhao , Yating Li . 基于深度学习的物理化学课程DOK教学实践初探——以弯曲液面附加压力和蒸气压教学为例. University Chemistry, 2025, 40(6): 28-36. doi: 10.12461/PKU.DXHX202408049
-
[15]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[16]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[17]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[18]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[19]
Yajie Li , Bin Chen , Yiping Wang , Hui Xing , Wei Zhao , Geng Zhang , Siqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053
-
[20]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-0. doi: 10.3866/PKU.WHXB202408007
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(487)
- HTML views(27)
Login In
DownLoad: