Citation:
LIU Yang, ZHONG Hua, LIU Zhifeng, JIANG Yongbing, TAN Fei, ZENG Guangming, LAI Mingyong, HE Yibin. Purification and characterization of the biosurfactant rhamnolipid[J]. Chinese Journal of Chromatography,
;2014, 32(3): 248-255.
doi:
10.3724/SP.J.1123.2013.10026
-
Biosurfactant rhamnolipid is a metabolic intermediate produced by microorganisms under a certain condition. There are the polar hydrophilic group and the non-polar hydrophobic group in rhamnolipid molecule which always exhibits high surface or interfacial activity. A reliable separation and purification method as well as component identification technique is essential for success of production process. The rhamnolipid was produced by aerobic fermentation using Pseudomonas aeruginosa CCTCC AB93066 in this study. It was separated from the culture by acid precipitation and purified by column chromatography until two groups of monorhamnolipid and dirhamnolipid were obtained. High performance liquid chromatography with mass spectrometry (HPLC-MS) examination showed that either the monorhamnolipid or the dirhamnolipid contained three major species. They were RhaC10C10, RhaC10C12-H2, RhaC10C12 for monorhamnolipid and Rha2C10C10, Rha2C10C12-H2, Rha2C10C12 for dirhamnolipid. The results of the study suggested that Pseudomonas aeruginosa CCTCC AB93066 is a good strain for rhamnolipid production. Acid precipitation-column chromatography technique is good for purification of rhamnolipid. Meanwhile, HPLC-MS is a reliable method for identifying components of rhamnolipid with high sensitivity and accuracy.
-
-
-
[1]
[1] Makkar R S, Cameotra S S, Banat I M. AMB Express, 2011, 1(5): 18
-
[2]
[2] Liu Z F, Zeng G M, Zhong H, et al. World J Microb Biot, 2012, 28: 175

-
[3]
[3] Liu X L, Zeng G M, Tang L, et al. Process Biochem, 2008, 43: 1300

-
[4]
[4] Liang Y S, Yuan X Z, Zeng G M, et al. Biodegradation, 2010, 21: 615

-
[5]
[5] Banat I M, Franzetti A, Gandolfi I, et al. Appl Microbiol Biot, 2010, 87: 427

-
[6]
[6] Liu Z F, Zeng G M, Wang J, et al. Process Biochem, 2010, 45: 805

-
[7]
[7] Chayabutra C, Wu J, Ju L K. Biotechnol Bioeng, 2001, 72 (1): 25

-
[8]
[8] Sarachat T, Pornsunthorntawee O, Chavadej S, et al. Bioresource Technol, 2010, 101: 324

-
[9]
[9] Wang W, Zeng G M, Huang G H, et al. Acta Scientiae Circumstantiae (王伟, 曾光明, 黄国和, 等. 环境科学学报), 2005, 25(7): 965
-
[10]
[10] Nitschke M, Costa S G V A O, Contiero J. Appl Microbiol Biot, 2010, 160: 2066
-
[11]
[11] Ma M Y, Shi Z, Liu Y S. Chinese Journal of Environmental Engineering (马满英, 施周, 刘有势. 环境工程学报), 2008, 2(1): 83
-
[12]
[12] Kuyukina M S, Ivshina I B, Philp J C, et al. J Microbiol Meth, 2001, 46: 149

-
[13]
[13] Schenk T, Schuphan I, Schmidt B. J Chromatogr A, 1995, 693: 7

-
[14]
[14] Davis D A, Lynch H C, Varley J. Enzyme Microb Tech, 2001, 28: 346

-
[15]
[15] Hubert J, Plé K, Hamzaoui M, et al. C R Chimie, 2012, 15: 18

-
[16]
[16] Witek-Krowiak A, Witek J, Gruszczyńska A, et al. World J Microb Biot, 2011, 27: 1961

-
[17]
[17] Long X W, Meng Q, Sha R Y, et al. J Membrane Sci, 2012, 409: 105
-
[18]
[18] Mukherjee S, Das P, Sen R. Trends Biotechnol, 2006, 24(11): 509

-
[19]
[19] Déziel E, Lépine F, Dennie D, et al. Biochim Biophys Acta, 1999, 1440: 244

-
[20]
[20] Abalos A, Pinazo A, Infante M R, et al. Langmuir, 2001, 17: 1367

-
[21]
[21] Singh N, Pemmaraju S C, Pruthi P A, et al. Appl Microbiol Biot, 2013, 169: 2374
-
[22]
[22] Choi M H, Xu J, Gutierrez M, et al. J Biotechnol, 2011, 151(1): 30

- [23]
-
[24]
[24] Abdel-Mawgoud A M, Hausmann R, Lépine F, et al. Biosurfactants: from Genes to Applications. Berlin: Springer Verlag Heidelberg, 2011: 21
-
[25]
[25] Heyd M, Kohnert A, Tan T H, et al. Anal Bioanal Chem, 2008, 391: 1579

-
[26]
[26] Nitschke M, Costa S G V A O, Haddad R, et al. Biotechnol Progr, 2005, 21: 1562

-
[27]
[27] Mata-Sandoval J C, Karns J, Torrents A. J Chromatogr A, 1999, 864: 211

-
[28]
[28] Zhong H, Zeng G M, Liu J X, et al. Appl Microbiol Biot, 2008, 79: 671

-
[29]
[29] Zhong H, Zeng G M, Yuan X Z, et al. Appl Microbiol Biot, 2007, 77: 447

-
[30]
[30] Fu H Y, Zeng G M, Yuan X Z, et al. Journal of Biology (傅海燕, 曾光明, 袁兴中, 等. 生物学杂志), 2003, 20(6): 1
-
[31]
[31] Arino S, Marchal R, Vandecasteele J P. Appl Microbiol Biot, 1996, 45: 162

-
[32]
[32] Kennedy J H, Wiseman J M. Rapid Commun Mass Spectrom, 2010, 24: 1305

-
[33]
[33] Noordman W H, Brusseau M L, Janssen D B. Environ Sci Technol, 2000, 34: 832

-
[34]
[34] Ishigami Y, Gama Y, Nagahora H, et al. Chem Lett, 1987: 763
-
[35]
[35] Soberón-Chávez G, Lépine F, Déziel E. Appl Microbiol Biot, 2005, 68: 718

-
[1]
-
-
-
[1]
Houjin Li , Lin Wu , Xingwen Sun , Yuan Zheng , Zhanxiang Liu , Shuanglian Cai , Ying Xiong , Guangao Yu , Qingwen Liu , Jie Han , Xin Du , Chengshan Yuan , Qihan Zhang , Jianrong Zhang , Shuyong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Chromatography Experiments. University Chemistry, 2025, 40(5): 93-105. doi: 10.12461/PKU.DXHX202408100
-
[2]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[3]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[4]
Runjie Li , Hang Liu , Xisheng Wang , Wanqun Zhang , Wanqun Hu , Kaiping Yang , Qiang Zhou , Si Liu , Pingping Zhu , Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059
-
[5]
Yifan Xie , Liyun Yao , Ruolin Yang , Yuxing Cai , Yujie Jin , Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133
-
[6]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[7]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[8]
Qiuting Zhang , Fan Wu , Jin Liu , Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174
-
[9]
Shunü Peng , Huamin Li , Zhaobin Chen , Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043
-
[10]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[11]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[12]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[13]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[14]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[15]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
-
[16]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[17]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[18]
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
-
[19]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[20]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1491)
- HTML views(214)
Login In
DownLoad: