Citation: LIU Yang, ZHONG Hua, LIU Zhifeng, JIANG Yongbing, TAN Fei, ZENG Guangming, LAI Mingyong, HE Yibin. Purification and characterization of the biosurfactant rhamnolipid[J]. Chinese Journal of Chromatography, ;2014, 32(3): 248-255. doi: 10.3724/SP.J.1123.2013.10026 shu

Purification and characterization of the biosurfactant rhamnolipid

  • Corresponding author: ZHONG Hua,  ZENG Guangming, 
  • Received Date: 29 October 2013
    Available Online: 20 December 2013

    Fund Project: 国家自然科学基金项目(51378190,50908081,51039001,51378192,51308200). (51378190,50908081,51039001,51378192,51308200)

  • Biosurfactant rhamnolipid is a metabolic intermediate produced by microorganisms under a certain condition. There are the polar hydrophilic group and the non-polar hydrophobic group in rhamnolipid molecule which always exhibits high surface or interfacial activity. A reliable separation and purification method as well as component identification technique is essential for success of production process. The rhamnolipid was produced by aerobic fermentation using Pseudomonas aeruginosa CCTCC AB93066 in this study. It was separated from the culture by acid precipitation and purified by column chromatography until two groups of monorhamnolipid and dirhamnolipid were obtained. High performance liquid chromatography with mass spectrometry (HPLC-MS) examination showed that either the monorhamnolipid or the dirhamnolipid contained three major species. They were RhaC10C10, RhaC10C12-H2, RhaC10C12 for monorhamnolipid and Rha2C10C10, Rha2C10C12-H2, Rha2C10C12 for dirhamnolipid. The results of the study suggested that Pseudomonas aeruginosa CCTCC AB93066 is a good strain for rhamnolipid production. Acid precipitation-column chromatography technique is good for purification of rhamnolipid. Meanwhile, HPLC-MS is a reliable method for identifying components of rhamnolipid with high sensitivity and accuracy.
  • 加载中
    1. [1]

      [1] Makkar R S, Cameotra S S, Banat I M. AMB Express, 2011, 1(5): 18

    2. [2]

      [2] Liu Z F, Zeng G M, Zhong H, et al. World J Microb Biot, 2012, 28: 175  

    3. [3]

      [3] Liu X L, Zeng G M, Tang L, et al. Process Biochem, 2008, 43: 1300  

    4. [4]

      [4] Liang Y S, Yuan X Z, Zeng G M, et al. Biodegradation, 2010, 21: 615  

    5. [5]

      [5] Banat I M, Franzetti A, Gandolfi I, et al. Appl Microbiol Biot, 2010, 87: 427  

    6. [6]

      [6] Liu Z F, Zeng G M, Wang J, et al. Process Biochem, 2010, 45: 805  

    7. [7]

      [7] Chayabutra C, Wu J, Ju L K. Biotechnol Bioeng, 2001, 72 (1): 25  

    8. [8]

      [8] Sarachat T, Pornsunthorntawee O, Chavadej S, et al. Bioresource Technol, 2010, 101: 324  

    9. [9]

      [9] Wang W, Zeng G M, Huang G H, et al. Acta Scientiae Circumstantiae (王伟, 曾光明, 黄国和, 等. 环境科学学报), 2005, 25(7): 965

    10. [10]

      [10] Nitschke M, Costa S G V A O, Contiero J. Appl Microbiol Biot, 2010, 160: 2066

    11. [11]

      [11] Ma M Y, Shi Z, Liu Y S. Chinese Journal of Environmental Engineering (马满英, 施周, 刘有势. 环境工程学报), 2008, 2(1): 83

    12. [12]

      [12] Kuyukina M S, Ivshina I B, Philp J C, et al. J Microbiol Meth, 2001, 46: 149  

    13. [13]

      [13] Schenk T, Schuphan I, Schmidt B. J Chromatogr A, 1995, 693: 7  

    14. [14]

      [14] Davis D A, Lynch H C, Varley J. Enzyme Microb Tech, 2001, 28: 346  

    15. [15]

      [15] Hubert J, Plé K, Hamzaoui M, et al. C R Chimie, 2012, 15: 18  

    16. [16]

      [16] Witek-Krowiak A, Witek J, Gruszczyńska A, et al. World J Microb Biot, 2011, 27: 1961  

    17. [17]

      [17] Long X W, Meng Q, Sha R Y, et al. J Membrane Sci, 2012, 409: 105

    18. [18]

      [18] Mukherjee S, Das P, Sen R. Trends Biotechnol, 2006, 24(11): 509  

    19. [19]

      [19] Déziel E, Lépine F, Dennie D, et al. Biochim Biophys Acta, 1999, 1440: 244  

    20. [20]

      [20] Abalos A, Pinazo A, Infante M R, et al. Langmuir, 2001, 17: 1367  

    21. [21]

      [21] Singh N, Pemmaraju S C, Pruthi P A, et al. Appl Microbiol Biot, 2013, 169: 2374

    22. [22]

      [22] Choi M H, Xu J, Gutierrez M, et al. J Biotechnol, 2011, 151(1): 30  

    23. [23]

      [23] Ma H N, Hua Y J, Tu C Y, et al. Chinese Journal of Chromatography (马海宁, 华玉娟, 屠春燕, 等. 色谱), 2012, 30(3): 304

    24. [24]

      [24] Abdel-Mawgoud A M, Hausmann R, Lépine F, et al. Biosurfactants: from Genes to Applications. Berlin: Springer Verlag Heidelberg, 2011: 21

    25. [25]

      [25] Heyd M, Kohnert A, Tan T H, et al. Anal Bioanal Chem, 2008, 391: 1579  

    26. [26]

      [26] Nitschke M, Costa S G V A O, Haddad R, et al. Biotechnol Progr, 2005, 21: 1562  

    27. [27]

      [27] Mata-Sandoval J C, Karns J, Torrents A. J Chromatogr A, 1999, 864: 211  

    28. [28]

      [28] Zhong H, Zeng G M, Liu J X, et al. Appl Microbiol Biot, 2008, 79: 671  

    29. [29]

      [29] Zhong H, Zeng G M, Yuan X Z, et al. Appl Microbiol Biot, 2007, 77: 447  

    30. [30]

      [30] Fu H Y, Zeng G M, Yuan X Z, et al. Journal of Biology (傅海燕, 曾光明, 袁兴中, 等. 生物学杂志), 2003, 20(6): 1

    31. [31]

      [31] Arino S, Marchal R, Vandecasteele J P. Appl Microbiol Biot, 1996, 45: 162  

    32. [32]

      [32] Kennedy J H, Wiseman J M. Rapid Commun Mass Spectrom, 2010, 24: 1305  

    33. [33]

      [33] Noordman W H, Brusseau M L, Janssen D B. Environ Sci Technol, 2000, 34: 832  

    34. [34]

      [34] Ishigami Y, Gama Y, Nagahora H, et al. Chem Lett, 1987: 763

    35. [35]

      [35] Soberón-Chávez G, Lépine F, Déziel E. Appl Microbiol Biot, 2005, 68: 718  

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    9. [9]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    10. [10]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    11. [11]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    14. [14]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    15. [15]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    19. [19]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    20. [20]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

Metrics
  • PDF Downloads(0)
  • Abstract views(1228)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return