Citation: KAI Guiqing, LIU Liu, WANG Huanming. Separation mechanism of oleanane and ursane pentacyclic triterpenoid isomers by coordination chromatography[J]. Chinese Journal of Chromatography, ;2014, 32(3): 235-241. doi: 10.3724/SP.J.1123.2013.09015 shu

Separation mechanism of oleanane and ursane pentacyclic triterpenoid isomers by coordination chromatography

  • Corresponding author: KAI Guiqing, 
  • Received Date: 11 September 2013
    Available Online: 11 December 2013

  • This paper focuses on the study of the separation mechanism of oleanane and ursane pentacyclic triterpenoid isomers by a coordination chromatographic method. Based on the calculation analysis,β-cyclodextrin (β-CD) and its derivatives were selected as the suitable agents. The experimental results showed that the resolution of madecassoside isomers with the addition of glucosyl-β-cyclodextrin (Glu-β-CD) to the mobile phase (11.95) was higher than that of the addition of β-CD (9.61) or dimethyl-β-cyclodextrin (DM-β-CD) (9.89). The formation of 1:1 inclusion complexes was assumed. The apparent formation constants (KF) of pentacyclic triterpenes with β-CD were determined by HPLC method. For asiaticoside-B, the KF value with the addition of Glu-β-CD (2534 L/mol) was larger than that with the addition of β-CD (1467 L/mol) or DM-β-CD (1373 L/mol). According to the infrared characteristic absorbing peaks and simulation, the methyl part of asiaticoside-B might enter into β-CD cavity while the carbonyl group of asiaticoside-B might not enter into the cavity of β-CD, and the large glycoside parts were kept outside, forming hydrogen-bond interaction with the exterior of β-CD cavity. The results of the separation of oleanane and ursane pentacyclic triterpenoid isomers by coordination chromatography indicated that, the separation mechanism might be attributed to the steric differences (the place of methyl group in E cyclic), which lead to different chromatographic behaviors.
  • 加载中
    1. [1]

      [1] Zhang M F, Shen Y Q. Anti-Infection Pharmacy, 2012, 9: 13

    2. [2]

      [2] Jana U, Sur T K, Maity L N, et al. Nepal Med Coll J, 2010, 12: 8

    3. [3]

      [3] Aree W, Mayuree H T, Boonyong T, et al. J Ethnopharmacol, 2012, 143: 579  

    4. [4]

      [4] Hu C P, Chen L S, Xin Y, et al. Chinese Journal of Chromatography, 2006, 24(5): 492

    5. [5]

      [5] Tan Q, Shou Q Y, Zhang S, et al. Chinese Journal of Chromatography, 2010, 28(12): 1150

    6. [6]

      [6] Xiao C Z, Sheng H W. J Chromatogr B, 2009, 877: 477  

    7. [7]

      [7] Ha J K, Jae H P, Gyu T K. Microchem J, 2011, 98: 115  

    8. [8]

      [8] Rhourrhi-Friha B, Westa C, Pasquierb L, et al. J Chromatogr A, 2012, 1256: 177  

    9. [9]

      [9] Xie Y F, Yang Y Y, Liu J J, et al. Chinese Journal of Chromatography, 2013, 31(7): 679

    10. [10]

      [10] Chi Y M, Zhang Y, Wang Q X, et al. Chinese Journal of Chromatography, 2013, 31(9): 838

    11. [11]

      [11] Lesellier E, Destandau E, Grigoras C, et al. J Chromatogr A, 2012, 1268: 157  

    12. [12]

      [12] Li Z H, Tang G L, Pang Y Q, et al. Chinese Journal of Chromatography, 2010, 28(8): 790  

    13. [13]

      [13] Silvia A C, Stefano M. J Pharm Biomed Anal, 2012, 70: 647  

    14. [14]

      [14] Gao M Z, Yuan X Y, Xiao H B, et al. Chinese Journal of Chromatography, 2008, 26(3): 362

    15. [15]

      [15] Pan J, Kai G Q, Yuan C X, et al. Chinese Journal of Chromatography, 2007, 25(3): 316  

    16. [16]

      [16] Kai G Q, Pan J. Bull Korean Chem Soc, 2008, 29: 551  

    17. [17]

      [17] Pan J, Kai G Q, Yuan C X, et al. Chromatographia, 2007, 66: 121  

    18. [18]

      [18] Yan L, Gong P, Yuan L, et al. Chinese Journal of Chromatography, 2007, 25(3): 337

    19. [19]

      [19] Xu X H, Su Q, Zang Z H. Journal of Pharmaceutical Analysis, 2012, 2: 238  

    20. [20]

      [20] Zhang Y. Chinese Journal of Chromatography, 2014, 32(1): 47

    21. [21]

      [21] Claude B, Morina P, Lafossea M, et al. J Chromatogr A, 2004, 1049: 37  

    22. [22]

      [22] Fujimura K, Ueda T, Kitagawa M. Anal Chem, 1986, 58: 2668  

    23. [23]

      [23] Clarot I, Clédat D, Battu S, et al. J Chromatogr A, 2000, 903: 67  

    24. [24]

      [24] Ravelet C, Geze A, Villet A, et al. J Pharm Biomed Anal, 2002, 29: 425  

    25. [25]

      [25] Moeder C, O'Brien T, Thompson R, et al. J Chromatogr A, 1996, 736: 1  

    26. [26]

      [26] Gazpio C, Sánchez M, García-Zubiri I X, et al. J Pharm Biomed Anal, 2005, 37: 487  

    27. [27]

      [27] Bielejewska A, Duszczyk K, Sybilska D. J Chromatogr A, 2001, 931: 81  

    28. [28]

      [28] Mohseni R M, Hurtubise R J. J Chromatogr A, 1990, 499: 395  

    29. [29]

      [29] Schneiderman E, Stalcup A M. J Chromatogr B, 2000, 745: 83  

  • 加载中
    1. [1]

      Tong Wang Liangyu Hu Shiqi Chen Xinqiang Fu Rui Wang Kun Li Shuangyan Huan . Determination of Benzenediol Isomers in Cosmetics Using High-Performance Liquid Chromatography Empowered by “Mathematical Separation”. University Chemistry, 2026, 41(1): 9-19. doi: 10.12461/PKU.DXHX202503128

    2. [2]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Exploration and Practice of Online and Offline Hybrid Teaching Mode in High-Performance Liquid Chromatography Experiment. University Chemistry, 2025, 40(11): 100-107. doi: 10.12461/PKU.DXHX202412133

    3. [3]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    4. [4]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    5. [5]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    6. [6]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    9. [9]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    10. [10]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    11. [11]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    12. [12]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    15. [15]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    16. [16]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    18. [18]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    19. [19]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    20. [20]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

Metrics
  • PDF Downloads(0)
  • Abstract views(944)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return