Citation: LAO Wenjian. Analysis of toxaphene and its eight congeners in sediment and fish tissue by gas chromatography-negative ion mass spectrometry[J]. Chinese Journal of Chromatography, ;2013, 31(7): 667-673. doi: 10.3724/SP.J.1123.2013.06030 shu

Analysis of toxaphene and its eight congeners in sediment and fish tissue by gas chromatography-negative ion mass spectrometry

  • Corresponding author: LAO Wenjian, 
  • Received Date: 17 June 2013

  • Toxaphene quantification incorporating gas chromatography/negative chemical ionization mass spectrometry (GC/NCI-MS) offers improved sensitivity and specificity. The U.S. Environmental Protection Agency (USEPA) recently released a GC/NCI-MS method (Method 8276) for the measurement of technical toxaphene and eight specific congeners (Hx-Sed, Hp-Sed, P26, P41, P40, P44, P50 and P62). However, there is still lack of a practical and complete analytical method including sample extraction, clean up, instrumental analysis, and data analysis. The goal of this work was to develop a ready-to-use method for the quantification of total toxaphene and the eight congeners. Sediment and salmon fish tissue were selected as sample matrices and extracted with methylene chloride using an accelerated solvent extraction system. The sample extracts were cleaned up with active copper powder or gel permeation chromatography, and finally silica/alumina combination column. Separation was performed on a DB-XLB column. GC/NCI-MS was operated under selected ion monitoring mode with an identical set of confirmation and quantitation ions for total toxaphene and the eight congeners. Oxygen reaction of polychlorinated biphenyls (PCB) was monitored by PCB204, an internal calibration standard, and the reaction level was kept below 1%. Average relative response factors were used in quantitation. Quantitation of total toxaphene employed the sum of all detectable (S/N ≥ 3) 6-Cl to 10-Cl homolog peak areas, while the individual congeners were quantified followed the standard procedures for single analytes. Multi-point calibration solutions ranged from 0.5 (5 for P62) to 500 μ g/L for the individual congeners, and 50 to 500 μ g/L for technical toxaphene, with the lowest calibration levels as lower limits of quantitation. Average congener recovery was (90.8±17.4)% (n=10) in spiked sediment with relative standard deviations of 5.4%-12.8% (n=10), underscoring an excellently accurate and precise method. The method was applied to analyze sediment and fish tissue samples.
  • 加载中
    1. [1]

      [1] Voldner E C, Li Y F, Chemosphere, 1993, 27(10): 2073

    2. [2]

      [2] de Geus H J, Besselink H, Brouwer A, et al. Environ Health Perspect, 1999, 107: 115

    3. [3]

      [3] Wong F, Alegria H A, Bidleman T F. Environ Pollut, 2010, 158(3): 749  

    4. [4]

      [4] Kucklick J R, Helm P A. Anal Bioanal Chem, 2006, 386(4): 819  

    5. [5]

      [5] Korytar P, van Stee L L P, Leonards P E G, et al. J Chromatogr A, 2003, 994(1/2): 179

    6. [6]

      [6] Vetter W. Chemosphere, 1993, 26(6): 1079  

    7. [7]

      [7] Maruya K A, Francendese L, Manning R O. Estuaries, 2005, 28(5): 786  

    8. [8]

      [8] Krock B, Vetter W, Luckas B. Chemosphere, 1997, 35(7): 1519  

    9. [9]

      [9] Maruya K A, Walters T L, Manning R O. Estuaries, 2001, 24(4): 585  

    10. [10]

      [10] Smalling K L, Maruya K A. J Sep Sci, 2001, 24(2): 104  

    11. [11]

      [11] Bordajandi L R, Ramos J J, Sanz J, et al. J Chromatogr A, 2008, 1186(1/2): 312

    12. [12]

      [12] de Geus H J, Baycan-Keller R, Oehme M, et al. J High Resolut Chromatogr, 1998, 21(1): 39  

    13. [13]

      [13] Zhang B, Zheng M H, Liu G R, et al. Chinese Journal of Analytical Chemistry (张兵, 郑明辉, 刘国瑞, 等. 分析化学), 2012, 40(8): 1213http://wuxizazhi.cnki.net/Magazine/FXHX201208.html

    14. [14]

      [14] Swackhamer D L, Charles M J, Hites R A. Anal Chem, 1987, 59(6): 913  

    15. [15]

      [15] Xia X Y, Crimmins B S, Hopke P K, et al. Anal Bioanal Chem, 2009, 395(2): 457  

    16. [16]

      [16] Skopp S, Oehme M, Chu F L, et al. Environ Sci Technol, 2002, 36(12): 2729  

    17. [17]

      [17] Gouteux B, Lebeuf M, Trottier S, et al. Chemosphere, 2002, 49(2): 183  

    18. [18]

      [18] Chan H M, Yeboah F. Chemosphere, 2000, 41(4): 507  

    19. [19]

      [19] Veyrand B, Venisseau A, Marchand P, et al. J Chromatogr B, 2008, 865(1/2): 121

    20. [20]

      [20] Fowler B. Chemosphere, 2000, 41(4): 487  

    21. [21]

      [21] Santos F J, Galceran M T, Caixach J, et al. Rapid Commun Mass Spectrom, 1997, 11(4): 341  

    22. [22]

      [22] Lao W J, Tsukada D, Maruya K A. J Chromatogr A, 2012, 1270: 262  

    23. [23]

      [23] SN 0502-95

    24. [24]

      [24] YC/T 180-2004

    25. [25]

      [25] Wang M T, Liu Z Y, Mu J, et al. Dyeing and Finishing (王明泰, 刘志研, 牟峻, 等. 印染), 2006(6): 37http://www.redlib.cn/qikan/4919/200606.htm

    26. [26]

      [26] Xie Y L, Rao Z, Wang X H, et al. Journal of Instrumental Analysis (谢原利, 饶竹, 王晓华, 等. 分析测试学报), 2009, 28(7): 804http://wuxizazhi.cnki.net/Search/TEST200907009.html

    27. [27]

      [27] Zhang B, Wu J J, Liu G R, et al. Chinese Journal of Chromatography (张兵, 吴嘉嘉, 刘国瑞, 等. 色谱), 2010, 28(5): 456

    28. [28]

      [28] Tian S Q, Mao X H, Miao S, et al. Chinese Journal of Chromatography (田绍琼, 毛秀红, 苗水, 等. 色谱), 2012, 30(1): 14

    29. [29]

      [29] Xie Y L, Rao Z, Wang M, et al. Rock and Mineral Analysis (谢原利, 饶竹, 王沫, 等. 岩矿测试), 2008, 27(5): 363http://wuxizazhi.cnki.net/Search/YKCS200805011.html

    30. [30]

      [30] Liu J S, Liu H Y, Zhang H, et al. Chinese Journal of Environmental Science and Technology (刘婕丝, 刘红玉, 张慧, 等. 环境科学与技术), 2007, 30(10): 90http://www.cnki.com.cn/Article/CJFDTotal-YZZK200601007.htm

    31. [31]

      [31] Carlin F J, Revells H L, Reed D L. Chemosphere, 2000, 41(4): 481  

    32. [32]

      [32] USEPA. Method 8276-2012. [2013-06-10]. http://www.epa.gov/osw/hazard/testmethods/pdfs/8276.pdf

    33. [33]

      [33] Meng X Z, Blasius M E, Gossett R W, et al. Environ Pollut, 2009, 157: 2731  

    34. [34]

      [34] Lao W, Tsukada D, Greensteint D J, et al. Environ Toxicol Chem, 2010, 29(4): 843  

    35. [35]

      [35] Maruya K A, Wakeham S G, Vetter W, et al. Environ Toxicol Chem, 2000, 19(9): 2198  

    36. [36]

      [36] Li Y F. J Geophys Res-Atmosphere, 2001, 106(D16): 17919

  • 加载中
    1. [1]

      Zhiqiang XINGJinling LIUMingmin SULei ZHANGLijun YANG . CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181

    2. [2]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    3. [3]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    4. [4]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    5. [5]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    6. [6]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    10. [10]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    11. [11]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    12. [12]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    13. [13]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    14. [14]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    15. [15]

      Jiangyuan QiuTao YuJunxin ChenWenxuan LiXiaoxuan Zhangjinsheng LiRui GuoZaiyin HuangXuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-0. doi: 10.1016/j.actphy.2025.100157

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    18. [18]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(0)
  • Abstract views(459)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return