Citation: ZHANG Shurong, WU Hailong, ZHAI Min, KANG Chao, YIN Xiaoli, YU Ruqin. Comparison for applicability of different trilinear decomposition algorithms to liquid chromatography-mass spectrometry data measured from multiple samples[J]. Chinese Journal of Chromatography, ;2013, 31(6): 550-555. doi: 10.3724/SP.J.1123.2013.03051 shu

Comparison for applicability of different trilinear decomposition algorithms to liquid chromatography-mass spectrometry data measured from multiple samples

  • Corresponding author: WU Hailong,  YU Ruqin, 
  • Received Date: 28 March 2013
    Available Online: 25 April 2013

    Fund Project: 国家自然科学基金项目(21175041) (21175041)国家科技部"973"计划课题(2012CB910602) (2012CB910602)国家自然科学基金创新研究群体科学基金项目(21221003). (21221003)

  • The applicability of different trilinear decomposition algorithm to LC-MS data measured from multiple samples is discussed in this paper. An actual LC-MS data set contained a low abundance peptide was adopted to make a test for these algorithms. The bilinear method was not able to handle this type of low abundance situations, and made a mathematical separation as expected. It is found out that the famous trilinear decomposition algorithm could not be used in the LC-MS data directly. The most probable reason is the sparsity property of the pure MS spectra, which means they have positive response values at some m/z coordinates where the ions emerged and zero values elsewhere. A novel algorithm named NNATLD (non-negative alternating trilinear decomposition) has been designed by the present authors to make an effective trilinear decomposition for the three-way data set constructed by LC-MS data. The new algorithm adapts the property of MS spectra, saves the computing resources, and converges fast.
  • 加载中
    1. [1]

      [1] Washburn M P, Wolters D, Yates III J R. Nature Biotechnology, 2001, 19(3): 242  

    2. [2]

      [2] Wolters D A, Washburn M P, Yates III J R. Anal Chem, 2001, 73(23): 5683  

    3. [3]

      [3] Fournier M L, Gilmore J M, Martin-Brown S A, et al. Chem Rev, 2007, 107(8): 3654  

    4. [4]

      [4] Nesvizhskii A I. Meth Mol Biol, 2007, 367: 87

    5. [5]

      [5] Blonder J, Chan K C, Issaq H J, et al. Nature Protocols, 2007, 1(6): 2784  

    6. [6]

      [6] Liu H, Sadygov R G, Yates III J R. Anal Chem, 2004, 76(14): 4193  

    7. [7]

      [7] Kawamoto S, Matsumoto Y, Mizuno K, et al. Gene, 1996, 174(1): 151  

    8. [8]

      [8] Anderson L, Seilhamer J. Electrophoresis, 1997, 18(3/4): 533

    9. [9]

      [9] Futcher B, Latter G I, Monardo P, et al. Mol Cell Biol, 1999, 19(11): 7357

    10. [10]

      [10] Gygi S P, Rochon Y, Franza B R, et al. Mol Cell Biol, 1999, 19(3): 1720

    11. [11]

      [11] Opiteck G J, Lewis K C, Jorgenson J W, et al. Anal Chem, 1997, 69(8): 1518  

    12. [12]

      [12] Wall D B, Kachman M T, Gong S, et al. Anal Chem, 2000, 72(6): 1099  

    13. [13]

      [13] Wu H L, Nie J F, Yu Y J, et al. Anal Chim Acta, 2009, 650(1): 131  

    14. [14]

      [14] Wu H L, Shibukawa M, Oguma K. J Chemom, 1998, 12(1): 1  

    15. [15]

      [15] Zhang Y, Wu H L, Xia A L, et al. Talanta, 2007, 72(3): 926  

    16. [16]

      [16] Li S F, Wu H L, Yu Y J, et al. Talanta, 2010, 81(3): 805  

    17. [17]

      [17] Yu Y J, Wu H L, Shao S Z, et al. Talanta, 2011, 85(3): 1549  

    18. [18]

      [18] Jaumot J, Gargallo R, de Juan A, et al. Chemom Intell Lab Syst, 2005, 76(1): 101  

    19. [19]

      [19] Jaumot J, Tauler R. Chemom Intell Lab Syst, 2010, 103(2): 96  

    20. [20]

      [20] Olivieri A C, Wu H L, Yu R Q. Chemom Intell Lab Syst, 2009, 96(2): 246  

    21. [21]

      [21] Booksh K S, Kowalski B R. Anal Chem, 1994, 66(15): 782A

    22. [22]

      [22] Strohalm M, Kavan D, Novak P, et al. Anal Chem, 2010, 82(11): 4648  

    23. [23]

      [23] Strohalm M, Hassman M, Kosata B, et al. Rapid Commun Mass Spectrom, 2008, 22(6): 905  

    24. [24]

      [24] Carroll J, Chang J J. Psychometrika, 1970, 35(3): 283  

    25. [25]

      [25] Harshman R A. UCLA Working Papers in Phonetics, 1970, 16(1): 84

    26. [26]

      [26] Kiers H, Krijnen W. Psychometrika, 1991, 56(1): 147  

    27. [27]

      [27] Chen Z P, Wu H L, Jiang J H, et al. Chemom Intell Lab Syst, 2000, 52(1): 75  

    28. [28]

      [28] Xia A, Wu H, Fang D, et al. J Chemom, 2005, 19(2): 65  

    29. [29]

      [29] Bro R, De Jong S. J Chemom, 1997, 11(5): 3931

    30. [30]

      [30] Paatero P. Chemom Intell Lab Syst, 1997, 38(2): 223  

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    12. [12]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    13. [13]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    14. [14]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    15. [15]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    16. [16]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    20. [20]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

Metrics
  • PDF Downloads(0)
  • Abstract views(239)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return