Citation: DAI Shou-Hui, ZHAO Hua-Lin, WANG Min, Charles S. Wang, CHAI Ting-Ting, YANG Shu-Ming, QIU Jing. Determination of Polychlorinated Biphenyls Enantiomers in Lotus Root and Sediment by Chiral Gas Chromatography-Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2012, 40(11): 1758-1763. doi: 10.3724/SP.J.1096.2012.20523 shu

Determination of Polychlorinated Biphenyls Enantiomers in Lotus Root and Sediment by Chiral Gas Chromatography-Mass Spectrometry

  • Corresponding author: QIU Jing, 
  • Received Date: 20 May 2012
    Available Online: 23 July 2012

    Fund Project: 本文系国家自然科学基金(No. 20907073)资助项目 (No. 20907073)

  • An enantioselective method was developed for separation and determination of six chiral polychlorinated biphenyls (PCBs) including PCB 91, 95, 136, 149, 176 and 183 in lotus root, stem, leaf and sediment by GC-MS. After optimizations of instrumental parameters for enantiomeric separation and investigations of sample preparations including accelerated solvent extraction (ASE) parameters, extraction solvents and cleanup methods, PCBs enantiomers were extracted from samples by ASE with n-hexane/acetone (1:1, V/V) at 100℃ and 10.3 MPa for 10 min. The extracts were orderly sulphonated by sulfuric acid, purified by Florisil solid phase extraction column, reconstituted with isooctane after being concentrated, and respectively detected by GC-MS with Chirasil-Dex and BGB-172 columns. For all PCBs enantiomers, good linearities were obtained in the concentration range of 0.5-100 μg/L, and recoveries of spiked samples at 0.25, 2.5 and 25 μg/kg levels were 82.8%-117.0% with relative standard deviations (RSD) of 1.5%-13.6%. Limits of detection (LOD) and limits of quantification (LOQ) were 0.01-0.02 μg/kg and 0.025-0.04 μg/kg, respectively. The real samples analysis showed that chiral PCBs were not detected in lotus roots from markets, but higher concentrations were found in lotus root and sediment from contaminated area. The concentrations of PCB 91-2, PCB 95-1 and (+)- PCB 136 in lotus root, stem and leaf were respectively higher than those of their enantiomers, while no significant differences between two enantiomers of PCB 149, 176 and 183.
  • 加载中
    1. [1]

      1 PENG Yan-Chao, HUANG Gen-Hua, SUN Min. China New Technologies and Products, 2010, (3): 23-24

    2. [2]

      彭艳超, 黄根华, 孙 敏. 中国新技术新产品, 2010, (3): 23-24

    3. [3]

      2 SHI Yong-Fu, LIN Hong, HUANG Dong-Mei, GONG Qian, CAI You-Qiong, WANG Yuan, QIAN Bei-Lei. Chinese J. Anal. Chem., 2010, 38(9): 1345-1348

    4. [4]

      史永富, 林 洪, 黄冬梅, 龚 倩, 蔡友琼, 王 媛, 钱蓓蕾. 分析化学, 2010, 38(9): 1345-1348

    5. [5]

      3 Kaiser K L E. Environ. Pollut., 1974, 7(2): 93-101

    6. [6]

      4 Püttmann M, Mannschreck A, Oesch F, Robertson L. Biochem. Pharmacol., 1989, 38(8): 1345-1352

    7. [7]

      5 Rodman L E, Shedlofsky S I, Mannschreck A, Püttmann M, Swim A T, Robertson L W. Biochem. Pharmacol., 1991, 41(6): 915-922

    8. [8]

      6 Determination of polychlorobiphenyls (PCBs) in feed-Gas chromatography. National Standards of the People's Republic of China. GB/T 8381.8-2005

    9. [9]

      饲料中多氯联苯的测定-气相色谱法. 中华人民共和国国家标准. GB/T 8381.8-2005

    10. [10]

      7 LI Li-Jun, WANG Na, WANG Hai-Jiao, SONG Li-Hua. Chinese J. Anal. Lab., 2009, 28(12): 4-7

    11. [11]

      李丽君, 王 娜, 王海娇, 宋丽华. 分析实验室, 2009, 28(12): 4-7

    12. [12]

      8 HU En-Yu, YANG Li-Li, WANG Mei-Fei, MU Ying-Feng. The Administration and Environmental Monitoring, 2010, 22(1): 44-48

    13. [13]

      胡恩宇, 杨丽莉, 王美飞, 母应锋. 环境监测管理技术, 2010, 22(1): 44-48

    14. [14]

      9 Warner N A, Wong C S. Environ. Sci. Technol., 2006, 40(13): 4158-4164

    15. [15]

      10 Wong C S, Lau F, Clark M, Mabury S A, Muir D C G. Environ. Sci. Technol., 2002, 36 (6): 1257-1262

    16. [16]

      11 Ross M S, Verreault J, Letcher R J, Gabrielsen G W, Wong C S. Environ. Sci. Technol., 2008, 42(19): 7181-7186

    17. [17]

      12 Zhai G S, Hu D F, Lehmler H J, Schnoor J L. Environ. Sci. Technol., 2011, 45(6): 2308-2316

    18. [18]

      13 Hardt I H, Wolf C, Gehrcke B, Hochmuth D H, Pfaffenberger B, Hühnerfuss H. J. High Resolut. Chromatogr., 1994, 17(12): 859-864

    19. [19]

      14 Wong C S, Garrison A W. J. Chromatogr. A, 2000, 866(2): 213-220

    20. [20]

      15 HE Xiao-Qing, LI Gong-Ke, XIONG Guo-Hua, ZHANG Zhan-Xia. Chinese J. Anal. Chem., 2000, 28(1): 26-30

    21. [21]

      何小青, 李攻科, 熊国华, 张展霞. 分析化学, 2000, 28(1): 26-30

    22. [22]

      16 Karasali H, Balayiannis G, Anagnostopoulos H, Hourdakis A. Bull. Environ. Contam. Toxicol., 2005, 75(2): 257-263

  • 加载中
    1. [1]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    5. [5]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    6. [6]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    7. [7]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    8. [8]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    12. [12]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    16. [16]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    17. [17]

      Zhexue Lu Ping Wu Huihui Li Libai Wen . 四“味”一体的无机及分析化学课程思政. University Chemistry, 2025, 40(6): 333-340. doi: 10.12461/PKU.DXHX202405196

    18. [18]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

Metrics
  • PDF Downloads(0)
  • Abstract views(378)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return