Citation: . CCS Chemistry |  接触-消融,给锂电极穿上保护“镓”[J]. CCS Chemistry, ;2020, 2(0): 686-695. doi: 10.31635/ccschem.020.202000182 shu

CCS Chemistry |  接触-消融,给锂电极穿上保护“镓”

Figures(1)

  • 武汉大学付磊课题组设计了一种基于液态金属的保护层,首次利用液态金属的脆化和快速扩散等特性,显著抑制锂枝晶的生长,从而保护锂金属电池在高倍率下稳定长循环。




     

    由于锂离子电池的能量密度已经难以满足日益增长的社会需求,具备更高能量密度的新一代电池在近年来受到越来越多的关注。其中,锂金属电池凭借锂金属电极超高理论比容量和极低电化学电位跻身前列。但是在长时间充放电过程中,锂金属电极的本征特性(包括极高反应活性和严重的体积膨胀)使其难以避免锂枝晶生长,而尖锐的枝晶极易刺穿隔膜,造成电池爆炸,这一严重的安全隐患也阻碍了锂金属电池的实际应用。

     

    液态金属在新型电池中已经崭露头角,诺奖得主Goodenough教授在2016年提出钠钾合金作为室温液态金属电极。其流动性和自愈性能够抑制电极表面产生枝晶,但是这类材料的高反应活性、电极封装等问题仍亟待解决。那么针对现有蓬勃发展的锂金属电极,液态金属是否能为抑制枝晶生长给出另一份答卷呢?

     

    近期,武汉大学付磊课题组另辟蹊径,聚焦于典型的液态金属——镓(Ga),制备出Ga基复合膜作为锂金属负极的保护层。该组提出了接触−消融机制,当枝晶刺入保护层时,即可触发Ga发生独特的脆化现象,合金化接触区域,抑制枝晶向上生长的应力,从而实现均匀的锂沉积。通过精心设计和优化膜结构,将Ga液滴限域于分级多孔的聚二甲基硅氧烷(PDMS)膜中,仅2 μm的膜厚实现Ga的稳定过冷态(熔点降低至–16.6oC),使其在长循环中保持液态性质。同时,PDMS的电绝缘性避免Ga参与电化学反应,而多孔通道确保了锂离子的快速传输,提高电解液浸润性(图1)。

     


    图1

     

    通过X射线光电子能谱的深度分析,作者证实了合金化产物是Ga14Li3。这与Ga发生电化学反应的产物截然不同,且锂在该合金中处于特殊的非键合状态,有利于在循环过程中锂离子的可逆脱出。二次离子质谱验证了锂沉积集中于保护层下方,说明锂离子能通过保护层并在其下方实现均匀沉积(图2)。

     


    图2

     

    作者进一步对比不同电流密度下对称电池的长循环性能来确认保护层的作用(图3)。在2 mA cm−2的电流密度下,未修饰的锂金属负极和纯PDMS修饰的锂负极均在较短时间内发生短路。而保护层作用下的锂电极寿命可超过2000 h。值得一提的是,即使在超高电流密度(10 mA cm−2)和大容量(5 mA h cm−2)下,受Ga基保护层作用的对称电池仍能维持极其稳定的电压曲线,这证实了接触−消融机制在高锂离子通量下的稳定性。此外,在保护层作用下,全电池也展现出优异的倍率性能和循环稳定性,说明了其实际应用的潜力。

     


    图3

     

    综上所述,该研究工作提供了一种可以接触消融锂枝晶的保护层,为锂金属负极提供实时保护。这些结果强调了与枝晶直接反应的重要性,并且该保护层可与其他抑制手段强强联手,有望完全实现金属负极的无枝晶生长。该工作以research article 的形式发表在CCS Chemistry,并在CCS Chemistry官网“Just Published”栏目上线。


     文章详情:

    Touch Ablation of Lithium Dendrites via Liquid Metal for High-Rate and Long-Lived Batteries

    Wenjie Wang†, Xiaohui Zhu†, and Lei Fu*

    Citation: CCS Chem. 2020, 2, 686–695

    Link:https://doi.org/10.31635/ccschem.020.202000182




  • 加载中
  • 加载中
    1. [1]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    2. [2]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    3. [3]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    4. [4]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    5. [5]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    6. [6]

      Jinwei Duan Ying Wang Lin Cui Huayu Zheng Kang Wang Yinghui Wang Shanshan Wang Jiajia Li Qizhao Wang . Exploration and Practice in the Construction of Ideological and Political Education for the Foundational Course “General Chemistry” Based on Cultural Confidence in Sino-Foreign Cooperative Education. University Chemistry, 2024, 39(4): 227-237. doi: 10.3866/PKU.DXHX202310052

    7. [7]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    8. [8]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    13. [13]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(0)
  • Abstract views(10456)
  • HTML views(975)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return