Citation: HUANG Tong-Dai,  CAO Yu-Yu,  JIANG Yun-Jing,  ZHAI Bei-Bei,  BAI Rong-Xian,  WU Jie,  YOU Xiang-Yu,  SUN Hong-Mei. Analysis of Antimicrobial and Wound-Healing Properties of Injectable and Adhesive Thermosensitive Hydrogels with Ultrafast Self-gelling[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 982-993. doi: 10.19756/j.issn.0253-3820.231142 shu

Analysis of Antimicrobial and Wound-Healing Properties of Injectable and Adhesive Thermosensitive Hydrogels with Ultrafast Self-gelling

  • Corresponding author: SUN Hong-Mei, hmsunqi@163.com
  • Received Date: 12 April 2023
    Revised Date: 5 May 2023

    Fund Project: Supported by the Collaborative Grant-in-Aid of the HBUT National ″111″ Center for Cellular Regulation and Molecular Pharmaceutics (No. XBTK-2022007) and the Scientific Research Program Project of Hubei Provincial Department of Education (No. B2017047).

  • The development of a smart hydrogel platform with shape adaptability and excellent antibacterial activity for treating bacteria-infected wound is highly demanded in practical applications. Herein, an injectable thermosensitive hydrogel with adhesive and photothermal antibacterial activity was prepared by combination of biocompatible chitosan (CS), β-sodium glycerophosphate (β-GP) and polydopamine nanoparticles (PDA NPs) via hydrogen bonding and Schiff base bond. It was noted that catechol groups were grafted on the chitosan backbone to improve the adhesive activity between hydrogel and tissues. Catechol-modified chitosan (CHI-C), β-GP and PDA NPs could form a crosslinked network by simple stirring at physiological temperature within 1.5 min. Furthermore, the introduction of PDA NPs with efficient photothermal conversion ability not only endowed the hydrogel with excellent antibacterial ability, but also enhanced the mechanical property of the hydrogel network. The as-prepared CHI-C/β-GP/PDA hydrogel with good biocompatibility, excellent photothermal conversion ability, and fantastic antibacterial effect could be injected directly in the irregular wounds of mice to form the hydrogel in situ. The experimental results demonstrated that the as-prepared smart hydrogel could be expected to serve as a promising wound to promote bacteria-infected wound healing.
  • 加载中
    1. [1]

      WELLER C D, TEAM V, SUSSMAN G. Front. Pharmacol., 2020, 11:155.

    2. [2]

    3. [3]

      LIANG Y, HE J, GUO B. ACS Nano, 2021, 15(8):12687-12722.

    4. [4]

      WANG H, XU Z, ZHAO M, LIU G, WU J. Biomater. Sci., 2021, 9(5):1530-1546.

    5. [5]

      CHENG W, WANG M, CHEN M, NIU W, LI Y, WANG Y, LUO M, XIE C, LENG T, LEI B. Chem. Eng. J., 2021, 409:128140.

    6. [6]

      MA Y, YAO J, LIU Q, HAN T, ZHAO J, MA X, TONG Y, JIN G, QU K, LI B, XU F. Adv. Funct. Mater., 2020, 30(39):2001820.

    7. [7]

      JIANG Y, MENG X, WU Z, QI X. Carbohydr. Polym., 2016, 144:245-253.

    8. [8]

      HUANG W, CHENG S, WANG X, ZHANG Y, CHEN L, ZHANG L. Adv. Funct. Mater., 2021, 31(22):2009189.

    9. [9]

      GAO G, JIANG Y W, JIA H R, WU F G. Biomaterials, 2019, 188:83-95.

    10. [10]

    11. [11]

      HUANG Q, YANG Y Q, ZHU Y, CHEN Q H, ZHAO T J, XIAO Z X, WANG M Y, SONG X P, JIANG Y T, YANG Y R, ZHANG J P, XIAO Y, NAN Y Y, WU W, AI K L. Small, 2023, DOI:10.1002/smll.202207350.

    12. [12]

      HUANG Q, YANG Y, ZHAO T, CHEN Q, LIU M, JI S, ZHU Y, YANG Y, ZHANG J, ZHAO H, NAN Y, AI K. Bioactive Mater., 2022, 21:381-393.

    13. [13]

      WANG J, ZHANG C, YANG Y, FAN A, CHI R, SHI J, ZHANG X. Appl. Surf. Sci., 2019, 494:708-720.

    14. [14]

      TONG C, ZHONG X, YANG Y, LIU X, ZHONG G, XIAO C, LIU B, WANG W, YANG X. Biomaterials, 2020, 243:119936.

    15. [15]

      LIU X F, ZHANG J, LIU J J, ZHOU Q H, LIU Z, HU P Y, YUAN Z, RAMAKRISHNA S, YANG D P, LONG Y Z. Chem. Eng. J., 2020, 401:126096.

    16. [16]

      TAO B, LIN C, DENG Y, YUAN Z, SHEN X, CHEN M, HE Y, PENG Z, HU Y, CAI K. J. Mater. Chem. B, 2019, 7(15):2534-2548.

    17. [17]

      HUANG S S, LIU H L, LIAO K D, HU Q Q, GUO R, DENG K X. ACS Appl. Mater. Interfaces, 2020, 12(26):28952- 28964.

    18. [18]

      QI X, ZENG Q, TONG X, SU T, XIE L, YUAN K, XU J, SHEN J. J. Hazard. Mater., 2021, 402:123359.

    19. [19]

      GUO H, HUANG S, XU A, XUE W. Chem. Mater., 2022, 34(6):2655-2671.

    20. [20]

      PARK J, BRUST T F, LEE H J, LEE S C, WATTS V J, YEO Y. ACS Nano, 2014, 8(4):3347-3356.

    21. [21]

      WANG W, CHEN J, LI M, JIA H, HAN X, ZHANG J, ZOU Y, TAN B, LIANG W, SHANG Y, XU Q, A S, WANG W, MAO J, GAO X, FAN G, LIU W. ACS Appl. Mater. Interfaces, 2019, 11(3):2880-2890.

    22. [22]

      WU H, HU H, WAN J, LI Y, WU Y, TANG Y, XIAO C, XU H, YANG X, LI Z. Chem. Eng. J., 2018, 349:129-145.

    23. [23]

      WANG Y, WU Y, LONG L, YANG L, FU D, HU C, KONG Q, WANG Y. ACS Appl. Mater. Interfaces, 2021, 13(28):33584-33599.

    24. [24]

      DENG A P, KANG X, ZHANG J, YANG Y, YANG S L. Mater. Sci. Eng., C, 2017, 78:1147-1154.

    25. [25]

      ZHANG D, OUYANG Q, HU Z, LU S, QUAN W, LI P, CHEN Y, LI S. Int. J. Biol. Macromol., 2021, 173:591-606.

    26. [26]

      LI M, LIANG Y, LIANG Y, PAN G, GUO B. Chem. Eng. J., 2022, 427:132039.

    27. [27]

      ZHENG Y, WANG W, ZHAO J, WU C, YE C, HUANG M, WANG S. Carbohydr. Polym., 2019, 222:115039.

    28. [28]

      ZHAO Y Q, SUN Y, ZHANG Y, DING X, ZHAO N, YU B, ZHAO H, DUAN S, XU F J. ACS Nano, 2020, 14(2):2265- 2275.

    29. [29]

      TAO B, LIN C, YUAN Z, HE Y, CHEN M, LI K, HU J, YANG Y, XIA Z, CAI K. Chem. Eng. J., 2021, 403:126182.

    30. [30]

      LIANG Y, ZHAO X, HU T, CHEN B, YIN Z, MA P X, GUO B. Small, 2019, 15(12):1900046.

    31. [31]

      MALEKI A, HE J, BOCHANI S, NOSRATI V, SHAHBAZI M A, GUO B. ACS Nano, 2021, 15(12):18895-18930.

    32. [32]

      LIANG Y, LI Z, HUANG Y, YU R, GUO B. ACS Nano, 2021, 15(4):7078-7093.

  • 加载中
    1. [1]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    2. [2]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    3. [3]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    4. [4]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    5. [5]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    8. [8]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    9. [9]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    17. [17]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(14)
  • Abstract views(1303)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return