Citation: YU Chun-Miao,  WANG Ye-Sheng,  ZHU Zhen-Tong,  LI Bing-Ling. Structure Analysis of Large Size Assembly with Solid-state Nanopore[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 842-850. doi: 10.19756/j.issn.0253-3820.231088 shu

Structure Analysis of Large Size Assembly with Solid-state Nanopore

  • Corresponding author: LI Bing-Ling, binglingli@ciac.ac.cn
  • Received Date: 9 March 2023
    Revised Date: 27 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22074136, 22004102) and the Cooperation Funding of Changchun with Chinese academy of sciences (No. 21SH16).

  • In recent years, with the rapid development of nanopore sequencing technique, more attention are paid to nanopore. With the development of nucleic acid amplification techniques, the function of DNA has been expanded from a carrier of genetic information to a programmable functional material, and the need for the characterization of DNA assembly is increasingly emerging. However, traditional characterization methods are often unable to provide comprehensive structural information of DNA assembly, and some methods cannot be used in a homogeneous environment. Therefore, a variety of technologies should be combined to complete the characterization. Solid-state nanopore is a kind of characterization method that can complement existing techniques. Taking a four-hairpin hybridization chain reaction (HCR) as the model, the dumbbell and the G-quadruplex on the side-chain of HCR duplex concatamers in homogeneous solution were distinguished in this study. The current offset of the single-side dumbbell structure assembly was about 10 pA, while in the presence of K+, the current offset of the G-quadruplex structure assembly increased nearly 4 times. Moreover, the reaction process and reaction products of the concatenated hybridization chain reaction(C-HCR) were analyzed in detail, and the difference in current of assemblies was obviously detected. With the increase of dimension of structure, the current offset increased exponentially. This study paved the way for the subsequent detection of more levels of cascade hybridization chain reaction system. Solid-state nanopores were expected to be an effective means of characterizing DNA nanostructure, such as analyzing finer nanostructures or distinguishing mixed nanostructures in complex samples.
  • 加载中
    1. [1]

      DEKKER C. Nat. Nanotechnol., 2007, 2(4):209-215.

    2. [2]

      VARONGCHAYAKUL N, SONG J, MELLER A, GRINSTAFF M W. Chem. Soc. Rev., 2018, 47(23):8512-8524.

    3. [3]

      HU Z, HUO M, YING Y, LONG Y. Angew. Chem. Int. Ed., 2021, 60(27):14738-14749.

    4. [4]

      LIU Y, WANG K, WANG Y, WANG L, YAN S, DU X, ZHANG P, CHEN H Y, HUANG S. J. Am. Chem. Soc., 2022, 144(2):757-768.

    5. [5]

      KASIANOWICZ J J, BRANDIN E, BRANTON D, DEAMER D W. Proc. Natl. Acad. Sci. U. S. A., 1996, 93(24):13770-13773.

    6. [6]

      LIU L, WU H C. Angew. Chem. Int. Ed., 2016, 55(49):15216-15222.

    7. [7]

      CAO C, YING Y L, HU Z L, LIAO D F, TIAN H, LONG Y T. Nat. Nanotechnol., 2016, 11(8):713-718.

    8. [8]

      LI J, STEIN D, MCMULLAN C, BRANTON D, AZIZ M J, GOLOVCHENKO J A. Nature, 2001, 412(6843):166-169.

    9. [9]

      ZHANG S, LI M, SU B, SHAO Y. Annu. Rev. Anal. Chem., 2018, 11(1):265-286.

    10. [10]

      GOPFRICH K, LI C Y, RICCI M, BHAMIDIMARRI S P, YOO J, GYENES B, OHMANN A, WINTERHALTER M, AKSIMENTIEV A, KEYSER U F. ACS Nano, 2016, 10(9):8207-8214.

    11. [11]

      LEE K, PARK K B, KIM H J, YU J S, CHAE H, KIM H M, KIM K B. Adv. Mater., 2018, 30(42):1704680.

    12. [12]

      DING T, YANG J, PAN V, ZHAO N, LU Z, KE Y, ZHANG C. Nucleic Acids Res., 2020, 48(6):2791-2806.

    13. [13]

      SHARMA R K, AGRAWAL I, DAI L, DOYLE P S, GARAJ S. Nat. Commun., 2019, 10(1):4473.

    14. [14]

      CHEN K, GULAREK F, LIU B, WEINHOLD E, KEYSER U F. ACS Nano, 2021, 15(2):2679-2685.

    15. [15]

      BELL N A W, CHEN K, GHOSAL S, RICCI M, KEYSER U F. Nat. Commun., 2017, 8(1):380.

    16. [16]

      WILNER O I, WILLNER I. Chem. Rev., 2012, 112(4):2528-2556.

    17. [17]

      TORRING T, VOIGT N V, NANGREAVE J, YAN H, GOTHELF K V. Chem. Soc. Rev., 2011, 40(12):5636-5646.

    18. [18]

      DU R R, CEDRONE E, ROMANOV A, FALKOVICH R, DOBROVOLSKAIA M A, BATHE M. ACS Nano, 2022, 16(12):20340-20352.

    19. [19]

      DIRKS R M, PIERCE N A. Proc. Natl. Acad. Sci. U. S. A., 2004, 101(43):15275-15278.

    20. [20]

      BI S, YUE S, ZHANG S. Chem. Soc. Rev., 2017, 46(14):4281-4298.

    21. [21]

      SUN H, YAO F, SU Z, KANG X F. Biosens. Bioelectron., 2020, 150:111906.

    22. [22]

      CHU H, ZHAO J, MI Y, ZHAO Y, LI L. Angew. Chem. Int. Ed., 2019, 58(42):14877-14881.

    23. [23]

      WEI J, GONG X, WANG Q, PAN M, LIU X, LIU J, XIA F, WANG F. Chem. Sci., 2018, 9(1):52-61.

    24. [24]

      LI L, FENG J, LIU H, LI Q, TONG L, TANG B. Chem. Sci., 2016, 7(3):1940-1945.

    25. [25]

      XUAN F, HSING I M. J. Am. Chem. Soc., 2014, 136(28):9810-9813.

    26. [26]

      ZHU Z, ZHOU Y, XU X, WU R, JIN Y, LI B. Anal. Chem., 2018, 90(1):814-820.

    27. [27]

      YU C, WANG Y, WU R, ZHU Z, LI B. ACS Appl. Bio Mater., 2021, 4(4):3649-3657.

    28. [28]

      WU R, ZHU Z, XU X, YU C, LI B. Nanoscale, 2019, 11(21):10339-10347.

    29. [29]

      WU R, WANG Y, ZHU Z, YU C, LI H, LI B, DONG S. ACS Appl. Mater. Interfaces, 2021, 13(8):9482-9490.

    30. [30]

      LI B, JIANG Y, CHEN X, ELLINGTON A D. J. Am. Chem. Soc., 2012, 134(34):13918-13921.

    31. [31]

      ZHU J, BOŠKOVIĆ F, KEYSER U F. Nano Lett., 2022, 22(12):4993-4998.

    32. [32]

      WILLIAMSON J R, RAGHURAMAN M K, CECH T R. Cell, 1989, 59(5):871-880.

  • 加载中
    1. [1]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    2. [2]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    5. [5]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    6. [6]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    7. [7]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    8. [8]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    13. [13]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    14. [14]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    15. [15]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    16. [16]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    17. [17]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    18. [18]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    19. [19]

      Meihui Cai Yi Huang Xingxing Ma Qiuling Song . Exploring the Mysteries of the Petasis-Boronic Acid-Mannich Reaction. University Chemistry, 2025, 40(11): 184-190. doi: 10.12461/PKU.DXHX202412054

    20. [20]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

Metrics
  • PDF Downloads(7)
  • Abstract views(2453)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return