Citation:
WANG Xiao-Yu, WEI Hui. Advance in Peroxidase-like Nanozymes and Their Analytical Applications[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(5): 666-680.
doi:
10.19756/j.issn.0253-3820.231056
-
Among different nanozymes, peroxidase-like nanozymes have attracted extensive attention because of their great prospects in biosensing, bioimaging and disease treatment. By combining experiments with computational studies, several reports have elucidated the catalytic mechanism and structure-activity relationship of peroxidase-like nanozymes. Furthermore, to enable the rational design of highly active peroxidase-like nanozymes, several pioneering studies have developed numerous descriptors that can be used to predict their catalytic activity. These rationally designed highly active nanozymes have been used for in vitro and in vivo assays. This review first focused on the progress in the rational design of peroxidase-like nanozymes, and then introduced some typical examples of the analytical applications of peroxidase-like nanozymes. In addition, the key issues and challenges faced by peroxidase-like nanozymes were summarized and their further development directions were prospected.
-
-
-
[1]
WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.
-
[2]
GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.
-
[3]
WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.
-
[4]
FAN K, CAO C, PAN Y, LU D, YANG D, FENG J, SONG L, LIANG M, YAN X. Nat. Nanotechnol., 2012, 7(7):459-464.
-
[5]
TAO Y, LIN Y, HUANG Z, REN J, QU X. Adv. Mater., 2013, 25(18):2594-2599.
-
[6]
WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.
-
[7]
HUANG Y, REN J, QU X. Chem. Rev., 2019, 119(6):4357-4412.
-
[8]
JIANG D, NI D, ROSENKRANS Z T, HUANG P, YAN X, CAI W. Chem. Soc. Rev., 2019, 48(14):3683-3704.
-
[9]
DING H, CAI Y, GAO L, LIANG M, MIAO B, WU H, LIU Y, XIE N, TANG A, FAN K, YAN X, NIE G. Nano Lett., 2019, 19(1):203-209.
-
[10]
LI S, SHANG L, XU B, WANG S, GU K, WU Q, SUN Y, ZHANG Q, YANG H, ZHANG F, GU L, ZHANG T, LIU H. Angew. Chem. Int. Ed., 2019, 58(36):12624-12631.
-
[11]
ZHEN W, LIU Y, WANG W, ZHANG M, HU W, JIA X, WANG C, JIANG X. Angew. Chem. Int. Ed., 2020, 59(24):9491- 9497.
-
[12]
LI J, LIU W, WU X, GAO X. Biomaterials, 2015, 48:37-44.
-
[13]
FANG G, LI W, SHEN X, PEREZ-AGUILAR J M, CHONG Y, GAO X, CHAI Z, CHEN C, GE C, ZHOU R. Nat. Commun., 2018, 9(1):129.
-
[14]
HU Y, GAO X J, ZHU Y, MUHAMMAD F, TAN S, CAO W, LIN S, JIN Z, GAO X, WEI H. Chem. Mater., 2018, 30(18):6431-6439.
-
[15]
WANG X, GAO X J, QIN L, WANG C, SONG L, ZHOU Y N, ZHU G, CAO W, LIN S, ZHOU L, WANG K, ZHANG H, JIN Z, WANG P, GAO X, WEI H. Nat. Commun., 2019, 10(1):704.
-
[16]
XU B, WANG H, WANG W, GAO L, LI S, PAN X, WANG H, YANG H, MENG X, WU Q, ZHENG L, CHEN S, SHI X, FAN K, YAN X, LIU H. Angew. Chem. Int. Ed., 2019, 58(15):4911-4916.
-
[17]
SHEN X, WANG Z, GAO X, ZHAO Y. ACS Catal., 2020, 10(21):12657-12665.
-
[18]
LU X, GAO S, LIN H, YU L, HAN Y, ZHU P, BAO W, YAO H, CHEN Y, SHI J. Adv. Mater., 2020, 32:2002246.
-
[19]
WANG Z, ZHANG R, YAN X, FAN K. Mater. Today, 2020, 41:81-119.
-
[20]
DONG J, SONG L, YIN J J, HE W, WU Y, GU N, ZHANG Y. ACS Appl. Mater. Interfaces, 2014, 6(3):1959-1970.
-
[21]
LI S, ZHANG Y, WANG Q, LIN A, WEI H. Anal. Chem., 2022, 94(1):312-323.
-
[22]
SCHLÖGL R. Angew. Chem. Int. Ed., 2015, 54(11):3465-3520.
-
[23]
ZHAO R, ZHAO X, GAO X. Chem. Eur. J., 2015, 21(3):960-964.
-
[24]
SHEN X, WANG Z, GAO X J, GAO X. Adv. Mater., 2023:e2211151.
-
[25]
LIN S, WEI H. Sci. China Life Sci., 2019, 62(5):710-712.
-
[26]
KIM M S, LEE J, KIM H S, CHO A, SHIM K H, LE T N, AN S S A, HAN J W, KIM M I, LEE J. Adv. Funct. Mater., 2020, 30(1):1905410.
-
[27]
JIAO L, YAN H, WU Y, GU W, ZHU C, DU D, LIN Y. Angew. Chem. Int. Ed., 2020, 59(7):2565-2576.
-
[28]
WANG X, QIN L, ZHOU M, LOU Z, WEI H. Anal. Chem., 2018, 90(19):11696-11702.
-
[29]
HE W, WU X, LIU J, HU X, ZHANG K, HOU S, ZHOU W, XIE S. Chem. Mater., 2010, 22(9):2988-2994.
-
[30]
XIA X, ZHANG J, LU N, KIM M J, GHALE K, XU Y, MCKENZIE E, LIU J, YE H. ACS Nano, 2015, 9(10):9994-10004.
-
[31]
LI Z, YANG X, YANG Y, TAN Y, HE Y, LIU M, LIU X, YUAN Q. Chem. Eur. J., 2018, 24(2):409-415.
-
[32]
IVANOVA M N, GRAYFER E D, PLOTNIKOVA E E, KIBIS L S, DARABDHARA G, BORUAH P K, DAS M R, FEDOROV V E. ACS Appl. Mater. Interfaces, 2019, 11(25):22102-22112.
-
[33]
KIM M S, CHO S, JOO S H, LEE J, KWAK S K, KIM M I, LEE J. ACS Nano, 2019, 13(4):4312-4321.
-
[34]
GUO W, ZHANG M, LOU Z, ZHOU M, WANG P, WEI H. ChemCatChem, 2019, 11(2):737-743.
-
[35]
LIANG Q, XI J, GAO X J, ZHANG R, YANG Y, GAO X, YAN X, GAO L, FAN K. Nano Today, 2020, 35:100935.
-
[36]
ZHU Y, WU J, HAN L, WANG X, LI W, GUO H, WEI H. Anal. Chem., 2020, 92(11):7444-7452.
-
[37]
FENG L, ZHANG L, ZHANG S, CHEN X, LI P, GAO Y, XIE S, ZHANG A, WANG H. ACS Appl. Mater. Interfaces, 2020, 12(15):17547-17556.
-
[38]
LI S, ZHAO X, GANG R, CAO B, WANG H. Anal. Chem., 2020, 92(7):5152-5157.
-
[39]
XI Z, WEI K, WANG Q, KIM M J, SUN S, FUNG V, XIA X. J. Am. Chem. Soc., 2021, 143(7):2660-2664.
-
[40]
XI Z, GAO W, XIA X. ChemBioChem, 2020, 21(17):2440-2444.
-
[41]
HE W, ZHOU Y T, WAMER W G, HU X, WU X, ZHENG Z, BOUDREAU M D, YIN J J. Biomaterials, 2013, 34(3):765- 773.
-
[42]
FU Y, ZHAO X, ZHANG J, LI W. J. Phys. Chem. C, 2014, 118(31):18116-18125.
-
[43]
PENG F F, ZHANG Y, GU N. Chin. Chem. Lett., 2008, 19(6):730-733.
-
[44]
AHMED S R, TAKEMEURA K, LI T C, KITAMOTO N, TANAKA T, SUZUKI T, PARK E Y. Biosens. Bioelectron., 2017, 87:558-565.
-
[45]
LIU X, WU J, LIU Q, LIN A, LI S, ZHANG Y, WANG Q, LI T, AN X, ZHOU Z, YANG M, WEI H. J. Mater. Chem. B, 2021, 9(35):7238-7245.
-
[46]
NILSSON A, PETTERSSON L G M, HAMMER B, BLIGAARD T, CHRISTENSEN C H, NRSKOV J K. Catal. Lett., 2005, 100(3-4):111-114.
-
[47]
LIU S, LU F, XING R, ZHU J. Chem. Eur. J., 2011, 17(2):620-625.
-
[48]
WU R, CHONG Y, FANG G, JIANG X, PAN Y, CHEN C, YIN J J, GE C. Adv. Funct. Mater., 2018, 28(28), 1801484.
-
[49]
TIAN N, ZHOU Z Y, SUN S G, DING Y, WANG Z L. Science, 2007, 316(5825):732-735.
-
[50]
ZHAO Z J, LIU S, ZHA S, CHENG D, STUDT F, HENKELMAN G, GONG J. Nat. Rev. Mater., 2019, 4(12):792-804.
-
[51]
WANG Q, LI C, WANG X, PU J, ZHANG S, LIANG L, CHEN L, LIU R, ZUO W, ZHANG H, TAO Y, GAO X, WEI H. Nano Lett., 2022, 22(24):10003-10009.
-
[52]
BLIGAARD T, NØRSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN C H, SEHESTED J. J. Catal., 2004, 224(1):206-217.
-
[53]
ZHUANG J, MIDGLEY A C, WEI Y, LIU Q, KONG D, HUANG X. Adv. Mater., 2023:e2210848.
-
[54]
LI T, WANG Y, LIU W, FEI H, GUO C, WEI H. Angew. Chem. Int. Ed., 2023, 62(12):e202212438.
-
[55]
WANG X, QIN L, LIN M, XING H, WEI H. Anal. Chem., 2019, 91(16):10648-10656.
-
[56]
LUO F, LIN Y, ZHENG L, LIN X, CHI Y. ACS Appl. Mater. Interfaces, 2015, 7(21):11322-11329.
-
[57]
HU Y, CHENG H, ZHAO X, WU J, MUHAMMAD F, LIN S, HE J, ZHOU L, ZHANG C, DENG Y, WANG P, ZHOU Z, NIE S, WEI H. ACS Nano, 2017, 11(6):5558-5566.
-
[58]
CHENG H, ZHANG L, HE J, GUO W, ZHOU Z, ZHANG X, NIE S, WEI H. Anal. Chem., 2016, 88(10):5489-5497.
-
[59]
WU J, QIN K, YUAN D, TAN J, QIN L, ZHANG X, WEI H. ACS Appl. Mater. Interfaces, 2018, 10(15):12954-12959.
-
[60]
KARYAKIN A A, PUGANOVA E A, BUDASHOV I A, KUROCHKIN I N, KARYAKINA E E, LEVCHENKO V A, MATVEYENKO V N, VARFOLOMEYEV S D. Anal. Chem., 2004, 76(2):474-478.
-
[61]
KIM M I, YE Y, WON B Y, SHIN S, LEE J, PARK H G. Adv. Funct. Mater., 2011, 21(15):2868-2875.
-
[62]
ZHANG C, CHEN C, ZHAO D, KANG G, LIU F, YANG F, LU Y, SUN J. Anal. Chem., 2022, 94(8):3485-3493.
-
[63]
FENG J, HUANG P, SHI S, DENG K Y, WU F Y. Anal. Chim. Acta, 2017, 967:64-69.
-
[64]
LOU Z, ZHAO S, WANG Q, WEI H. Anal. Chem., 2019, 91(23):15267-15274.
-
[65]
NI P, DAI H, WANG Y, SUN Y, SHI Y, HU J, LI Z. Biosens. Bioelectron., 2014, 60:286-291.
-
[66]
CHEN W, ZHANG X, LI J, CHEN L, WANG N, YU S, LI G, XIONG L, JU H. Anal. Chem., 2020, 92(3):2714-2721.
-
[67]
ZHANG G Y, DENG S Y, CAI W R, COSNIER S, ZHANG X J, SHAN D. Anal. Chem., 2015, 87(17):9093-9100.
-
[68]
LING P, LEI J, ZHANG L, JU H. Anal. Chem., 2015, 87(7):3957-3963.
-
[69]
LI X, LI X, LI D, ZHAO M, WU H, SHEN B, LIU P, DING S. Biosens. Bioelectron., 2020, 168:112554.
-
[70]
TIAN L, QI J, ODERINDE O, YAO C, SONG W, WANG Y. Biosens. Bioelectron., 2018, 110:110-117.
-
[71]
BROTO M, KAMINSKI M M, ADRIANUS C, KIM N, GREENSMITH R, DISSANAYAKE-PERERA S, SCHUBERT A J, TAN X, KIM H, DIGHE A S, COLLINS J J, STEVENS M M. Nat. Nanotechnol., 2022, 17(10):1120-1126.
-
[72]
SONG Y, WANG X, ZHAO C, QU K, REN J, QU X. Chem. Eur. J., 2010, 16(12):3617-3621.
-
[73]
GUO Y, DENG L, LI J, GUO S, WANG E, DONG S. ACS Nano, 2011, 5(2):1282-1290.
-
[74]
CHAU L Y, HE Q, QIN A, YIP S P, LEE T M H. J. Mater. Chem. B, 2016, 4(23):4076-4083.
-
[75]
DUAN D, FAN K, ZHANG D, TAN S, LIANG M, LIU Y, ZHANG J, ZHANG P, LIU W, QIU X, KOBINGER G P, GAO G F, YAN X. Biosens. Bioelectron., 2015, 74:134-141.
-
[76]
LIU D, JU C, HAN C, SHI R, CHEN X, DUAN D, YAN J, YAN X. Biosens. Bioelectron., 2021, 173:112817.
-
[77]
JIANG X, WANG X, LIN A, WEI H. Anal. Chem., 2021, 93(14):5954-5962.
-
[78]
TANG Y, WU Y, XU W, JIAO L, CHEN Y, SHA M, YE H R, GU W, ZHU C. Anal. Chem., 2022, 94(2):1022-1028.
-
[79]
WEI Z, LUCIANO K, XIA X. ACS Nano, 2022, 16(12):21609-21617.
-
[80]
HU L, LIAO H, FENG L, WANG M, FU W. Anal. Chem., 2018, 90(10):6247-6252.
-
[81]
CHENG H, LIU Y, HU Y, DING Y, LIN S, CAO W, WANG Q, WU J, MUHAMMAD F, ZHAO X, ZHAO D, LI Z, XING H, WEI H. Anal. Chem., 2017, 89(21):11552-11559.
-
[82]
WANG Y M, LIU J W, ADKINS G B, SHEN W, TRINH M P, DUAN L Y, JIANG J H, ZHONG W. Anal. Chem., 2017, 89(22):12327-12333.
-
[83]
BORIACHEK K, MASUD M K, PALMA C, PHAN H P, YAMAUCHI Y, HOSSAIN M S A, NGUYEN N T, SALOMON C, SHIDDIKY M J A. Anal. Chem., 2019, 91(6):3827-3834.
-
[84]
ZHANG L N, DENG H H, LIN F L, XU X W, WENG S H, LIU A L, LIN X H, XIA X H, CHEN W. Anal. Chem., 2014, 86(5):2711-2718.
-
[85]
LI J, WANG J, WANG Y, TRAU M. Analyst, 2017, 142(24):4788-4793.
-
[86]
LIN Y, LIU K, YU P, XIANG L, LI X, MAO L. Anal. Chem., 2007, 79(24):9577-9583.
-
[87]
SARDESAI N P, GANESANA M, KARIMI A, LEITER J C, ANDREESCU S. Anal. Chem., 2015, 87(5):2996-3003.
-
[88]
DING Y, REN G, WANG G, LU M, LIU J, LI K, LIN Y. Anal. Chem., 2020, 92(6):4583-4591.
-
[89]
LOYNACHAN C N, SOLEIMANY A P, DUDANI J S, LIN Y, NAJER A, BEKDEMIR A, CHEN Q, BHATIA S N, STEVENS M M. Nat. Nanotechnol., 2019, 14(9):883-890.
-
[1]
-
-
-
[1]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[2]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[3]
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016
-
[4]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[5]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[6]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[7]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100021-0. doi: 10.3866/PKU.WHXB202311005
-
[8]
Kangjuan Cheng , Chunxiao Liu , Youpeng Wang , Qiu Jiang , Tingting Zheng , Xu Li , Chuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112
-
[9]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[10]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[11]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
-
[12]
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
-
[13]
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
-
[14]
Yuhang Zhang , Yi Li , Yuehan Cao , Yingjie Shuai , Yu Zhou , Ying Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173
-
[15]
Jingming Li , Bowen Ding , Nan Li , Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078
-
[16]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[17]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[18]
Rohit Kumar , Anita Sudhaik , Aftab Asalam Pawaz Khan , Van Huy Neguyen , Archana Singh , Pardeep Singh , Sourbh Thakur , Pankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150
-
[19]
Juan Hou , Chen Zhou , Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023
-
[20]
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
-
[1]
Metrics
- PDF Downloads(59)
- Abstract views(2479)
- HTML views(336)
Login In
DownLoad: