Citation: WANG Xiao-Yu,  WEI Hui. Advance in Peroxidase-like Nanozymes and Their Analytical Applications[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 666-680. doi: 10.19756/j.issn.0253-3820.231056 shu

Advance in Peroxidase-like Nanozymes and Their Analytical Applications

  • Corresponding author: WANG Xiao-Yu,  WEI Hui, 
  • Received Date: 17 February 2023
    Revised Date: 19 April 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22104055, 21874067, 21722503), the National Key R&D Program of China (Nos. 2021YFF1200700, 2019YFA0709200), the Priority Academic Program Development Jiangsu Higher Education Institutions Program and the Fundamental Research Funds for the Central Universities of China (Nos. 202200325, 021314380195).

  • Among different nanozymes, peroxidase-like nanozymes have attracted extensive attention because of their great prospects in biosensing, bioimaging and disease treatment. By combining experiments with computational studies, several reports have elucidated the catalytic mechanism and structure-activity relationship of peroxidase-like nanozymes. Furthermore, to enable the rational design of highly active peroxidase-like nanozymes, several pioneering studies have developed numerous descriptors that can be used to predict their catalytic activity. These rationally designed highly active nanozymes have been used for in vitro and in vivo assays. This review first focused on the progress in the rational design of peroxidase-like nanozymes, and then introduced some typical examples of the analytical applications of peroxidase-like nanozymes. In addition, the key issues and challenges faced by peroxidase-like nanozymes were summarized and their further development directions were prospected.
  • 加载中
    1. [1]

      WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.

    2. [2]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.

    3. [3]

      WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.

    4. [4]

      FAN K, CAO C, PAN Y, LU D, YANG D, FENG J, SONG L, LIANG M, YAN X. Nat. Nanotechnol., 2012, 7(7):459-464.

    5. [5]

      TAO Y, LIN Y, HUANG Z, REN J, QU X. Adv. Mater., 2013, 25(18):2594-2599.

    6. [6]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    7. [7]

      HUANG Y, REN J, QU X. Chem. Rev., 2019, 119(6):4357-4412.

    8. [8]

      JIANG D, NI D, ROSENKRANS Z T, HUANG P, YAN X, CAI W. Chem. Soc. Rev., 2019, 48(14):3683-3704.

    9. [9]

      DING H, CAI Y, GAO L, LIANG M, MIAO B, WU H, LIU Y, XIE N, TANG A, FAN K, YAN X, NIE G. Nano Lett., 2019, 19(1):203-209.

    10. [10]

      LI S, SHANG L, XU B, WANG S, GU K, WU Q, SUN Y, ZHANG Q, YANG H, ZHANG F, GU L, ZHANG T, LIU H. Angew. Chem. Int. Ed., 2019, 58(36):12624-12631.

    11. [11]

      ZHEN W, LIU Y, WANG W, ZHANG M, HU W, JIA X, WANG C, JIANG X. Angew. Chem. Int. Ed., 2020, 59(24):9491- 9497.

    12. [12]

      LI J, LIU W, WU X, GAO X. Biomaterials, 2015, 48:37-44.

    13. [13]

      FANG G, LI W, SHEN X, PEREZ-AGUILAR J M, CHONG Y, GAO X, CHAI Z, CHEN C, GE C, ZHOU R. Nat. Commun., 2018, 9(1):129.

    14. [14]

      HU Y, GAO X J, ZHU Y, MUHAMMAD F, TAN S, CAO W, LIN S, JIN Z, GAO X, WEI H. Chem. Mater., 2018, 30(18):6431-6439.

    15. [15]

      WANG X, GAO X J, QIN L, WANG C, SONG L, ZHOU Y N, ZHU G, CAO W, LIN S, ZHOU L, WANG K, ZHANG H, JIN Z, WANG P, GAO X, WEI H. Nat. Commun., 2019, 10(1):704.

    16. [16]

      XU B, WANG H, WANG W, GAO L, LI S, PAN X, WANG H, YANG H, MENG X, WU Q, ZHENG L, CHEN S, SHI X, FAN K, YAN X, LIU H. Angew. Chem. Int. Ed., 2019, 58(15):4911-4916.

    17. [17]

      SHEN X, WANG Z, GAO X, ZHAO Y. ACS Catal., 2020, 10(21):12657-12665.

    18. [18]

      LU X, GAO S, LIN H, YU L, HAN Y, ZHU P, BAO W, YAO H, CHEN Y, SHI J. Adv. Mater., 2020, 32:2002246.

    19. [19]

      WANG Z, ZHANG R, YAN X, FAN K. Mater. Today, 2020, 41:81-119.

    20. [20]

      DONG J, SONG L, YIN J J, HE W, WU Y, GU N, ZHANG Y. ACS Appl. Mater. Interfaces, 2014, 6(3):1959-1970.

    21. [21]

      LI S, ZHANG Y, WANG Q, LIN A, WEI H. Anal. Chem., 2022, 94(1):312-323.

    22. [22]

      SCHLÖGL R. Angew. Chem. Int. Ed., 2015, 54(11):3465-3520.

    23. [23]

      ZHAO R, ZHAO X, GAO X. Chem. Eur. J., 2015, 21(3):960-964.

    24. [24]

      SHEN X, WANG Z, GAO X J, GAO X. Adv. Mater., 2023:e2211151.

    25. [25]

      LIN S, WEI H. Sci. China Life Sci., 2019, 62(5):710-712.

    26. [26]

      KIM M S, LEE J, KIM H S, CHO A, SHIM K H, LE T N, AN S S A, HAN J W, KIM M I, LEE J. Adv. Funct. Mater., 2020, 30(1):1905410.

    27. [27]

      JIAO L, YAN H, WU Y, GU W, ZHU C, DU D, LIN Y. Angew. Chem. Int. Ed., 2020, 59(7):2565-2576.

    28. [28]

      WANG X, QIN L, ZHOU M, LOU Z, WEI H. Anal. Chem., 2018, 90(19):11696-11702.

    29. [29]

      HE W, WU X, LIU J, HU X, ZHANG K, HOU S, ZHOU W, XIE S. Chem. Mater., 2010, 22(9):2988-2994.

    30. [30]

      XIA X, ZHANG J, LU N, KIM M J, GHALE K, XU Y, MCKENZIE E, LIU J, YE H. ACS Nano, 2015, 9(10):9994-10004.

    31. [31]

      LI Z, YANG X, YANG Y, TAN Y, HE Y, LIU M, LIU X, YUAN Q. Chem. Eur. J., 2018, 24(2):409-415.

    32. [32]

      IVANOVA M N, GRAYFER E D, PLOTNIKOVA E E, KIBIS L S, DARABDHARA G, BORUAH P K, DAS M R, FEDOROV V E. ACS Appl. Mater. Interfaces, 2019, 11(25):22102-22112.

    33. [33]

      KIM M S, CHO S, JOO S H, LEE J, KWAK S K, KIM M I, LEE J. ACS Nano, 2019, 13(4):4312-4321.

    34. [34]

      GUO W, ZHANG M, LOU Z, ZHOU M, WANG P, WEI H. ChemCatChem, 2019, 11(2):737-743.

    35. [35]

      LIANG Q, XI J, GAO X J, ZHANG R, YANG Y, GAO X, YAN X, GAO L, FAN K. Nano Today, 2020, 35:100935.

    36. [36]

      ZHU Y, WU J, HAN L, WANG X, LI W, GUO H, WEI H. Anal. Chem., 2020, 92(11):7444-7452.

    37. [37]

      FENG L, ZHANG L, ZHANG S, CHEN X, LI P, GAO Y, XIE S, ZHANG A, WANG H. ACS Appl. Mater. Interfaces, 2020, 12(15):17547-17556.

    38. [38]

      LI S, ZHAO X, GANG R, CAO B, WANG H. Anal. Chem., 2020, 92(7):5152-5157.

    39. [39]

      XI Z, WEI K, WANG Q, KIM M J, SUN S, FUNG V, XIA X. J. Am. Chem. Soc., 2021, 143(7):2660-2664.

    40. [40]

      XI Z, GAO W, XIA X. ChemBioChem, 2020, 21(17):2440-2444.

    41. [41]

      HE W, ZHOU Y T, WAMER W G, HU X, WU X, ZHENG Z, BOUDREAU M D, YIN J J. Biomaterials, 2013, 34(3):765- 773.

    42. [42]

      FU Y, ZHAO X, ZHANG J, LI W. J. Phys. Chem. C, 2014, 118(31):18116-18125.

    43. [43]

      PENG F F, ZHANG Y, GU N. Chin. Chem. Lett., 2008, 19(6):730-733.

    44. [44]

      AHMED S R, TAKEMEURA K, LI T C, KITAMOTO N, TANAKA T, SUZUKI T, PARK E Y. Biosens. Bioelectron., 2017, 87:558-565.

    45. [45]

      LIU X, WU J, LIU Q, LIN A, LI S, ZHANG Y, WANG Q, LI T, AN X, ZHOU Z, YANG M, WEI H. J. Mater. Chem. B, 2021, 9(35):7238-7245.

    46. [46]

      NILSSON A, PETTERSSON L G M, HAMMER B, BLIGAARD T, CHRISTENSEN C H, NRSKOV J K. Catal. Lett., 2005, 100(3-4):111-114.

    47. [47]

      LIU S, LU F, XING R, ZHU J. Chem. Eur. J., 2011, 17(2):620-625.

    48. [48]

      WU R, CHONG Y, FANG G, JIANG X, PAN Y, CHEN C, YIN J J, GE C. Adv. Funct. Mater., 2018, 28(28), 1801484.

    49. [49]

      TIAN N, ZHOU Z Y, SUN S G, DING Y, WANG Z L. Science, 2007, 316(5825):732-735.

    50. [50]

      ZHAO Z J, LIU S, ZHA S, CHENG D, STUDT F, HENKELMAN G, GONG J. Nat. Rev. Mater., 2019, 4(12):792-804.

    51. [51]

      WANG Q, LI C, WANG X, PU J, ZHANG S, LIANG L, CHEN L, LIU R, ZUO W, ZHANG H, TAO Y, GAO X, WEI H. Nano Lett., 2022, 22(24):10003-10009.

    52. [52]

      BLIGAARD T, NØRSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN C H, SEHESTED J. J. Catal., 2004, 224(1):206-217.

    53. [53]

      ZHUANG J, MIDGLEY A C, WEI Y, LIU Q, KONG D, HUANG X. Adv. Mater., 2023:e2210848.

    54. [54]

      LI T, WANG Y, LIU W, FEI H, GUO C, WEI H. Angew. Chem. Int. Ed., 2023, 62(12):e202212438.

    55. [55]

      WANG X, QIN L, LIN M, XING H, WEI H. Anal. Chem., 2019, 91(16):10648-10656.

    56. [56]

      LUO F, LIN Y, ZHENG L, LIN X, CHI Y. ACS Appl. Mater. Interfaces, 2015, 7(21):11322-11329.

    57. [57]

      HU Y, CHENG H, ZHAO X, WU J, MUHAMMAD F, LIN S, HE J, ZHOU L, ZHANG C, DENG Y, WANG P, ZHOU Z, NIE S, WEI H. ACS Nano, 2017, 11(6):5558-5566.

    58. [58]

      CHENG H, ZHANG L, HE J, GUO W, ZHOU Z, ZHANG X, NIE S, WEI H. Anal. Chem., 2016, 88(10):5489-5497.

    59. [59]

      WU J, QIN K, YUAN D, TAN J, QIN L, ZHANG X, WEI H. ACS Appl. Mater. Interfaces, 2018, 10(15):12954-12959.

    60. [60]

      KARYAKIN A A, PUGANOVA E A, BUDASHOV I A, KUROCHKIN I N, KARYAKINA E E, LEVCHENKO V A, MATVEYENKO V N, VARFOLOMEYEV S D. Anal. Chem., 2004, 76(2):474-478.

    61. [61]

      KIM M I, YE Y, WON B Y, SHIN S, LEE J, PARK H G. Adv. Funct. Mater., 2011, 21(15):2868-2875.

    62. [62]

      ZHANG C, CHEN C, ZHAO D, KANG G, LIU F, YANG F, LU Y, SUN J. Anal. Chem., 2022, 94(8):3485-3493.

    63. [63]

      FENG J, HUANG P, SHI S, DENG K Y, WU F Y. Anal. Chim. Acta, 2017, 967:64-69.

    64. [64]

      LOU Z, ZHAO S, WANG Q, WEI H. Anal. Chem., 2019, 91(23):15267-15274.

    65. [65]

      NI P, DAI H, WANG Y, SUN Y, SHI Y, HU J, LI Z. Biosens. Bioelectron., 2014, 60:286-291.

    66. [66]

      CHEN W, ZHANG X, LI J, CHEN L, WANG N, YU S, LI G, XIONG L, JU H. Anal. Chem., 2020, 92(3):2714-2721.

    67. [67]

      ZHANG G Y, DENG S Y, CAI W R, COSNIER S, ZHANG X J, SHAN D. Anal. Chem., 2015, 87(17):9093-9100.

    68. [68]

      LING P, LEI J, ZHANG L, JU H. Anal. Chem., 2015, 87(7):3957-3963.

    69. [69]

      LI X, LI X, LI D, ZHAO M, WU H, SHEN B, LIU P, DING S. Biosens. Bioelectron., 2020, 168:112554.

    70. [70]

      TIAN L, QI J, ODERINDE O, YAO C, SONG W, WANG Y. Biosens. Bioelectron., 2018, 110:110-117.

    71. [71]

      BROTO M, KAMINSKI M M, ADRIANUS C, KIM N, GREENSMITH R, DISSANAYAKE-PERERA S, SCHUBERT A J, TAN X, KIM H, DIGHE A S, COLLINS J J, STEVENS M M. Nat. Nanotechnol., 2022, 17(10):1120-1126.

    72. [72]

      SONG Y, WANG X, ZHAO C, QU K, REN J, QU X. Chem. Eur. J., 2010, 16(12):3617-3621.

    73. [73]

      GUO Y, DENG L, LI J, GUO S, WANG E, DONG S. ACS Nano, 2011, 5(2):1282-1290.

    74. [74]

      CHAU L Y, HE Q, QIN A, YIP S P, LEE T M H. J. Mater. Chem. B, 2016, 4(23):4076-4083.

    75. [75]

      DUAN D, FAN K, ZHANG D, TAN S, LIANG M, LIU Y, ZHANG J, ZHANG P, LIU W, QIU X, KOBINGER G P, GAO G F, YAN X. Biosens. Bioelectron., 2015, 74:134-141.

    76. [76]

      LIU D, JU C, HAN C, SHI R, CHEN X, DUAN D, YAN J, YAN X. Biosens. Bioelectron., 2021, 173:112817.

    77. [77]

      JIANG X, WANG X, LIN A, WEI H. Anal. Chem., 2021, 93(14):5954-5962.

    78. [78]

      TANG Y, WU Y, XU W, JIAO L, CHEN Y, SHA M, YE H R, GU W, ZHU C. Anal. Chem., 2022, 94(2):1022-1028.

    79. [79]

      WEI Z, LUCIANO K, XIA X. ACS Nano, 2022, 16(12):21609-21617.

    80. [80]

      HU L, LIAO H, FENG L, WANG M, FU W. Anal. Chem., 2018, 90(10):6247-6252.

    81. [81]

      CHENG H, LIU Y, HU Y, DING Y, LIN S, CAO W, WANG Q, WU J, MUHAMMAD F, ZHAO X, ZHAO D, LI Z, XING H, WEI H. Anal. Chem., 2017, 89(21):11552-11559.

    82. [82]

      WANG Y M, LIU J W, ADKINS G B, SHEN W, TRINH M P, DUAN L Y, JIANG J H, ZHONG W. Anal. Chem., 2017, 89(22):12327-12333.

    83. [83]

      BORIACHEK K, MASUD M K, PALMA C, PHAN H P, YAMAUCHI Y, HOSSAIN M S A, NGUYEN N T, SALOMON C, SHIDDIKY M J A. Anal. Chem., 2019, 91(6):3827-3834.

    84. [84]

      ZHANG L N, DENG H H, LIN F L, XU X W, WENG S H, LIU A L, LIN X H, XIA X H, CHEN W. Anal. Chem., 2014, 86(5):2711-2718.

    85. [85]

      LI J, WANG J, WANG Y, TRAU M. Analyst, 2017, 142(24):4788-4793.

    86. [86]

      LIN Y, LIU K, YU P, XIANG L, LI X, MAO L. Anal. Chem., 2007, 79(24):9577-9583.

    87. [87]

      SARDESAI N P, GANESANA M, KARIMI A, LEITER J C, ANDREESCU S. Anal. Chem., 2015, 87(5):2996-3003.

    88. [88]

      DING Y, REN G, WANG G, LU M, LIU J, LI K, LIN Y. Anal. Chem., 2020, 92(6):4583-4591.

    89. [89]

      LOYNACHAN C N, SOLEIMANY A P, DUDANI J S, LIN Y, NAJER A, BEKDEMIR A, CHEN Q, BHATIA S N, STEVENS M M. Nat. Nanotechnol., 2019, 14(9):883-890.

  • 加载中
    1. [1]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    2. [2]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    3. [3]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100021-0. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    9. [9]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    10. [10]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    11. [11]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    13. [13]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    14. [14]

      Yuhang ZhangYi LiYuehan CaoYingjie ShuaiYu ZhouYing Zhou . Regulating the formation type by Ir of intermediates to suppress product overoxidation in photocatalytic methane conversion. Acta Physico-Chimica Sinica, 2026, 42(2): 100173-0. doi: 10.1016/j.actphy.2025.100173

    15. [15]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    16. [16]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Rohit KumarAnita SudhaikAftab Asalam Pawaz KhanVan Huy NeguyenArchana SinghPardeep SinghSourbh ThakurPankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150

    19. [19]

      Juan Hou Chen Zhou Jing Sun . Teaching Design of the Classical Analytical Chemistry Content Based on Logical and Innovative Thinking: A Case Study of the Application of Acid-Base Titration Method. University Chemistry, 2024, 39(4): 221-226. doi: 10.3866/PKU.DXHX202310023

    20. [20]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

Metrics
  • PDF Downloads(59)
  • Abstract views(2479)
  • HTML views(336)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return