Citation: SHANG Chang-Shuai,  LI Jing,  WANG Er-Kang,  GUO Shao-Jun. Recent Progress in Noble Metal Based Nanozymes for Bio-detection Application[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 652-665. doi: 10.19756/j.issn.0253-3820.231044 shu

Recent Progress in Noble Metal Based Nanozymes for Bio-detection Application

  • Corresponding author: LI Jing,  GUO Shao-Jun, 
  • Received Date: 10 February 2023
    Revised Date: 30 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 52025133, 22105007), the National Key R&D Program of China (No. 2019YFA0709202), the Tencent Foundation through the XPLORER PRIZE, the Beijing Natural Science Foundation (No. JQ18005), the Fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP202004), the Youth Innovation Promotion Association, Chinese Academy of Sciences (No. 202055) and the China Postdoctoral Science Foundation (No. 2020M670018).

  • In comparison with natural enzymes, nanozymes show many advantages such as high stability, ease to mass production and tunable enzymatic properties and possess great potentials for application in detection and biosensing fields. Especially, noble metal based nanozymes usually exhibit superior catalytic activity and stability. The achievements in precisely synthesizing noble metal-based nanomaterials at atomic levels enable investigation of interaction mechanisms between structures and enzymatic performances. In this review, the development of noble metal based nanozymes were sumarized, including noble metal nanocrystals and noble metal based singleatom nanozymes. The preparation strategies, regulation methods of enzymatic properties and underlying mechanisms were mainly discussed. The applications for detection and biosensing were also elucidated. At last, the challenges and prospects of this area were briefly discussed.
  • 加载中
    1. [1]

      GARCIA-VILOCA M, GAO J, KARPLUS M, TRUHLAR D G. Science, 2004, 303(5655):186-195.

    2. [2]

      ZHAO H. ACS Catal., 2011, 1(9):1119-1120.

    3. [3]

      GAO L, YAN X. Sci. China Life Sci., 2016, 59(4):400-402.

    4. [4]

    5. [5]

      WEI H, GAO L, FAN K, LIU J, HE J, QU X, DONG S, WANG E, YAN X. Nano Today, 2021, 40:101269.

    6. [6]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol, 2007, 2(9):577-583.

    7. [7]

      WEI H, WANG E. Chem. Soc. Rev., 2013, 42(14):6060-6093.

    8. [8]

      LIN Y, REN J, QU X. Acc. Chem. Res., 2014, 47(4):1097-1105.

    9. [9]

      WANG X, HU Y, WEI H. Inorg. Chem. Front., 2016, 3(1):41-60.

    10. [10]

      WEI Z, XI Z, VLASOV S, AYALA J, XIA X. Chem. Commun., 2020, 56(95):14962-14975.

    11. [11]

      WU W, WANG Q, CHEN J, HUANG L, ZHANG H, RONG K, DONG S. Nanoscale, 2019, 11(26):12603-12609.

    12. [12]

      LUO M, ZHAO Z, ZHANG Y, SUN Y, XING Y, LV F, YANG Y, ZHANG X, HWANG S, QIN Y, MA J Y, LIN F, SU D, LU G, GUO S. Nature, 2019, 574(7776):81-85.

    13. [13]

      GUO S, WANG E. Nano Today, 2011, 6(3):240-264.

    14. [14]

      NIU W, DUAN Y, QING Z, HUANG H, LU X. J. Am. Chem. Soc., 2017, 139(16):5817-5826.

    15. [15]

      XIA Y, XIONG Y, LIM B, SKRABALAK S. Angew. Chem. Int. Ed., 2009, 48(1):60-103.

    16. [16]

      CHEN M, WU B, YANG J, ZHENG N. Adv. Mater., 2012, 24(7):862-879.

    17. [17]

      SHANG C, HONG W, GUO Y, WANG J, WANG E. Chem. Eur. J., 2017, 23(24):5799-5803.

    18. [18]

      QIAO B, WANG A, YANG X, ALLARD L F, JIANG Z, CUI Y, LIU J, LI J, ZHANG T. Nat. Chem., 2011, 3(8):634-641.

    19. [19]

      HUANG L, CHEN J, GAN L, WANG J, DONG S. Sci. Adv., 2019, 5(5):eaav5490.

    20. [20]

      JIANG B, LIANG M. Chin. J. Chem., 2021, 39(1):174-180.

    21. [21]

      JI S, JIANG B, HAO H, CHEN Y, DONG J, MAO Y, ZHANG Z, GAO R, CHEN W, ZHANG R, LIANG Q, LI H, LIU S, WANG Y, ZHANG Q, GU L, DUAN D, LIANG M, WANG D, YAN X, LI Y. Nat. Catal., 2021, 4(5):407-417.

    22. [22]

      SHEN X, LIU W, GAO X, LU Z, WU X, GAO X. J. Am. Chem. Soc., 2015, 137(50):15882-15891.

    23. [23]

      FAN J, YIN J J, NING B, WU X, HU Y, FERRARI M, ANDERSON G J, WEI J, ZHAO Y, NIE G. Biomaterials, 2011, 32(6):1611-1618.

    24. [24]

      JV Y, LI B, CAO R. Chem. Commun., 2010, 46(42):8017-8019.

    25. [25]

      LI J, LIU W, WU X, GAO X. Biomaterials, 2015, 48:37-44.

    26. [26]

      HE S, YANG L, BALASUBRAMANIAN P, LI S, PENG H, KUANG Y, DENG H, CHEN W. J. Mater. Chem. A, 2020, 8(47):25226-25234.

    27. [27]

      WANG Q, HONG G, LIU Y, HAO J, LIU S. RSC Adv., 2020, 10(42):25209-25213.

    28. [28]

      CAI S, XIAO W, DUAN H, LIANG X, WANG C, YANG R, LI Y. Nano Res., 2018, 11(12):6304-6315.

    29. [29]

      YE H, MOHAR J, WANG Q, CATALANO M, KIM M J, XIA X. Sci. Bull., 2016, 61(22):1739-1745.

    30. [30]

      FANG G, LI W, SHEN X, PEREZ-AGUILAR J M, CHONG Y, GAO X, CHAI Z, CHEN C, GE C, ZHOU R. Nat. Commun., 2018, 9(1):129.

    31. [31]

      BU L, ZHANG N, GUO S, ZHANG X, LI J, YAO J, WU T, LU G, MA J Y, SU D, HUANG X. Science, 2016, 354(6318):1410-1414.

    32. [32]

      XI Z, CHENG X, GAO Z, WANG M, CAI T, MUZZIO M, DAVIDSON E, CHEN O, JUNG Y, SUN S, XU Y, XIA X. Nano Lett., 2020, 20(1):272-277.

    33. [33]

      NORSKOV J K, BLIGAARD T, ROSSMEISL J, CHRISTENSEN C H. Nat. Chem., 2009, 1(1):37-46.

    34. [34]

      LIU C, YAN Y, ZHANG X, MAO Y, REN X, HU C, HE W, YIN J. Nanoscale, 2020, 12(5):3068-3075.

    35. [35]

      XI Z, WEI K, WANG Q, KIM M J, SUN S, FUNG V, XIA X. J. Am. Chem. Soc., 2021, 143(7):2660-2664.

    36. [36]

      DUCHESNE P N, LI Z Y, DEMING C P, FUNG V, ZHAO X, YUAN J, REGIER T, ALDALBAHI A, ALMARHOON Z, CHEN S, JIANG D, ZHENG N, ZHANG P. Nat. Mater., 2018, 17(11):1033-1039.

    37. [37]

      YAN H, JIAO L, WANG H, ZHU Y, CHEN Y, SHUAI L, GU M, QIU M, GU W, ZHU C. Sens. Actuators, B, 2021, 343:130108.

    38. [38]

      YAN H, CHEN Y, JIAO L, GU W, ZHU C. Sens. Actuators, B, 2021, 341:130007.

    39. [39]

      WU Y, XU W, JIAO L, TANG Y, CHEN Y, GU W, ZHU C. Mater. Today, 2022, 52:327-347.

    40. [40]

      SHANG C, WANG Q, TAN H, LU S, WANG S, ZHANG Q, GU L, LI J, WANG E, GUO S. JACS Au, 2022, 2(11):2453- 2459.

    41. [41]

      PEI Y, ZHOU G, LUAN N, ZONG B, QIAO M, TAO F F. Chem. Soc. Rev., 2012, 41(24):8140-8162.

    42. [42]

      LAI J, HUANG B, TANG Y, LIN F, ZHOU P, CHEN X, SUN Y, LV F, GUO S. Chem, 2018, 4(5):1153-1166.

    43. [43]

      SUN X, GUO S, CHUNG C S, ZHU W, SUN S. Adv. Mater., 2013, 25(1):132-136.

    44. [44]

      XIONG Y, SHAN H, ZHOU Z, YAN Y, CHEN W, YANG Y, LIU Y, TIAN H, WU J, ZHANG H, YANG D. Small, 2017, 13(7):1603423.

    45. [45]

      PARK J, ZHANG L, CHOI S I, ROLING L T, LU N, HERRON J A, XIE S, WANG J, KIM M J, MAVRIKAKIS M, XIA Y. ACS Nano, 2015, 9(3):2635-2647.

    46. [46]

      XIA X, ZHANG J, LU N, KIM M J, GHALE K, XU Y, MCKENZIE E, LIU J, YE H. ACS Nano, 2015, 9(10):9994-10004.

    47. [47]

      CHEN Y, JIAO L, YAN H, XU W, WU Y, ZHENG L, GU W, ZHU C. Anal. Chem., 2021, 93(36):12353-12359.

    48. [48]

      POTT M, HAYASHI T, MORI T, MITTL P R E, GREEN A P, HILVERT D. J. Am. Chem. Soc., 2018, 140(4):1535- 1543.

    49. [49]

      SHANG C, GUO Y, WANG E. J. Mater. Chem. A, 2019, 7(6):2547-2552.

    50. [50]

      XIE S, LU N, XIE Z, WANG J, KIM M J, XIA Y. Angew. Chem. Int. Ed., 2012, 51(41):10266-10270.

    51. [51]

      XIA X, WANG Y, RUDITSKIY A, XIA Y. Adv. Mater., 2013, 25(44):6313-6333.

    52. [52]

      LU X, TUAN H Y, CHEN J, LI Z Y, KORGEL B A, XIA Y. J. Am. Chem. Soc., 2007, 129(6):1733-1742.

    53. [53]

      WANG Q, ZHANG L, SHANG C, ZHANG Z, DONG S. Chem. Commun., 2016, 52(31):5410-5413.

    54. [54]

      CAI K, LV Z, CHEN K, HUANG L, WANG J, SHAO F, WANG Y, HAN H. Chem. Commun., 2013, 49(54):6024-6026.

    55. [55]

      GE C, WU R, CHONG Y, FANG G, JIANG X, PAN Y, CHEN C, YIN J J. Adv. Funct. Mater., 2018, 28(28):1801484.

    56. [56]

      GUO S, ZHANG S, SUN X, SUN S. J. Am. Chem. Soc., 2011, 133(39):15354-15357.

    57. [57]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    58. [58]

      LI M, CHEN J, WU W, FANG Y, DONG S. J. Am. Chem. Soc., 2020, 142(36):15569-15574.

    59. [59]

      COMOTTI M, DELLA PINA C, MATARRESE R, ROSSI M. Angew. Chem. Int. Ed., 2004, 43(43):5812-5815.

    60. [60]

      BELTRAME P, COMOTTI M, PINA C D, ROSSI M. J. Catal., 2004, 228(2):282-287.

    61. [61]

      BELTRAME P, COMOTTI M, DELLA PINA C, ROSSI M. Appl. Catal., A, 2006, 297(1):1-7.

    62. [62]

      CHEN J, MA Q, LI M, CHAO D, HUANG L, WU W, FANG Y, DONG S. Nat. Commun., 2021, 12(1):3375.

    63. [63]

      ZHANG H, WATANABE T, OKUMURA M, HARUTA M, TOSHIMA N. Nat. Mater., 2012, 11(1):49-52.

    64. [64]

      CHEN J, MA Q, YU Z, LI M, DONG S. Angew. Chem. Int. Ed., 2022, 61(48):e202213930.

    65. [65]

      CAI T, FANG G, TIAN X, YIN J J, CHEN C, GE C. ACS Nano, 2019, 13(11):12694-12702.

    66. [66]

      GAO F, SHAO T, YU Y, XIONG Y, YANG L. Nat. Commun., 2021, 12(1):745.

    67. [67]

      LIU Y, QING Y, JING L, ZOU W, GUO R. Langmuir, 2021, 37(24):7364-7372.

    68. [68]

      LIN Y, REN J, QU X. Adv. Mater., 2014, 26(25):4200-4217.

    69. [69]

      LIU H, LI Y, SUN S, XIN Q, LIU S, MU X, YUAN X, CHEN K, WANG H, VARGA K, MI W, YANG J, ZHANG X D. Nat. Commun., 2021, 12(1):114.

    70. [70]

      ZHEN W, LIU Y, LIN L, BAI J, JIA X, TIAN H, JIANG X. Angew. Chem. Int. Ed., 2018, 57(32):10309-10313.

    71. [71]

      WU W, HUANG L, WANG E, DONG S. Chem. Sci., 2020, 11(36):9741-9756.

    72. [72]

      FAN Y, GAN X, ZHAO H, ZENG Z, YOU W, QUAN X. Chem. Eng. J., 2022, 427:131572.

    73. [73]

      CHEN Y, WANG P, HAO H, HONG J, LI H, JI S, LI A, GAO R, DONG J, HAN X, LIANG M, WANG D, LI Y. J. Am. Chem. Soc., 2021, 143(44):18643-18651.

    74. [74]

      YAN R, SUN S, YANG J, LONG W, WANG J, MU X, LI Q, HAO W, ZHANG S, LIU H, GAO Y, OUYANG L, CHEN J, LIU S, ZHANG X D, MING D. ACS Nano, 2019, 13(10):11552-11560.

    75. [75]

      WANG D, ZHANG B, DING H, LIU D, XIANG J, GAO X J, CHEN X, LI Z, YANG L, DUAN H, ZHENG J, LIU Z, JIANG B, LIU Y, XIE N, ZHANG H, YAN X, FAN K, NIE G. Nano Today, 2021, 40:101243.

    76. [76]

      ZHU D, CHEN H, HUANG C, LI G, WANG X, JIANG W, FAN K. Adv. Funct. Mater., 2022, 32(16):2110268.

    77. [77]

      WANG W, ZHU Y, ZHU X, ZHAO Y, XUE Z, XIONG C, WANG Z, QU Y, CHENG J, CHEN M, LIU M, ZHOU F, ZHANG H, JIANG Z, HU Y, ZHOU H, WANG H, LI Y, LIU Y, WU Y. ACS Appl. Mater. Interfaces, 2021, 13(38):45269-45278.

    78. [78]

      CHEN J, MA Q, ZHENG X, FANG Y, WANG J, DONG S. Nat. Commun., 2022, 13(1):2808.

    79. [79]

    80. [80]

      SONG Y, WANG X, ZHAO C, QU K, REN J, QU X. Chem. Eur. J., 2010, 16(12):3617-3621.

    81. [81]

      JIANG B, DUAN D, GAO L, ZHOU M, FAN K, TANG Y, XI J, BI Y, TONG Z, GAO G F, XIE N, TANG A, NIE G, LIANG M, YAN X. Nat. Protoc., 2018, 13(7):1506-1520.

    82. [82]

      WEI H, WANG E. Anal. Chem., 2008, 80(6):2250-2254.

    83. [83]

      ARIGA K, JI Q, MORI T, NAITO M, YAMAUCHI Y, ABE H, HILL J P. Chem. Soc. Rev., 2013, 42(15):6322-6345.

    84. [84]

      MA C B, ZHANG Y, LIU Q, DU Y, WANG E. Anal. Chem., 2020, 92(7):5319-5328.

    85. [85]

      WANG Y, JIA G, CUI X, ZHAO X, ZHANG Q, GU L, ZHENG L, LI L H, WU Q, SINGH D J, MATSUMURA D, TSUJI T, CUI Y T, ZHAO J, ZHENG W. Chem, 2021, 7(2):436-449.

    86. [86]

      DENG L, CHEN C, ZHU C, DONG S, LU H. Biosens. Bioelectron., 2014, 52:324-329.

    87. [87]

      WANG Q, ZHANG X, HUANG L, ZHANG Z, DONG S. Angew. Chem. Int. Ed., 2017, 56(50):16082-16085.

    88. [88]

      MCKEATING K S, SLOAN-DENNISON S, GRAHAM D, FAULDS K. Analyst, 2013, 138(21):6347-6353.

    89. [89]

      SONG W, NIE G, JI W, JIANG Y, LU X, ZHAO B, OZAKI Y. RSC Adv., 2016, 6(59):54456-54462.

    90. [90]

      WU J, QIN K, YUAN D, TAN J, QIN L, ZHANG X, WEI H. ACS Appl. Mater. Interfaces, 2018, 10(15):12954-12959.

    91. [91]

      LOGAN N, MCVEY C, ELLIOTT C, CAO C. Nano Res., 2020, 13(4):989-998.

    92. [92]

      GAO Z, LIU G G, YE H, RAUSCHENDORFER R, TANG D, XIA X. Anal. Chem., 2017, 89(6):3622-3629.

    93. [93]

      HE S B, CHEN F Q, XIU L F, PENG H P, DENG H H, LIU A L, CHEN W, HONG G L. Anal. Bioanal. Chem., 2020, 412(2):499-506.

    94. [94]

      HE W, LIU Y, YUAN J, YIN J J, WU X, HU X, ZHANG K, LIU J, CHEN C, JI Y, GUO Y. Biomaterials, 2011, 32(4):1139-1147.

    95. [95]

      LEUVERING J H W, THAL P J H M, WAART M, SCHUURS A H W M. J. Immunoassay, 1980, 1(1):77-91.

    96. [96]

      XU Y, LIU Y, WU Y, XIA X, LIAO Y, LI Q. Anal. Chem., 2014, 86(12):5611-5614.

    97. [97]

      GLYNOU K, IOANNOU P C, CHRISTOPOULOS T K, SYRIOPOULOU V. Anal. Chem., 2003, 75(16):4155-4160.

    98. [98]

      GRANT B D, ANDERSON C E, WILLIFORD J R, ALONZO L F, GLUKHOVA V A, BOYLE D S, WEIGL B H, NICHOLS K P. Anal. Chem., 2020, 92(16):11305-11309.

    99. [99]

      CHEN Z, ZHANG Z, ZHAI X, LI Y, LIN L, ZHAO H, BIAN L, LI P, YU L, WU Y, LIN G. Anal. Chem., 2020, 92(10):7226-7231.

    100. [100]

      WEI Z, LUCIANO K, XIA X. ACS Nano, 2022, 16(12):21609-21617.

  • 加载中
    1. [1]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    4. [4]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    8. [8]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    10. [10]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    12. [12]

      Huaihao CHENLingwen ZHANGYukun CHENJianjun ZHANG . A water-stable metal-organic framework probe for Al3+/Ga3+/In3+ detection. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2601-2608. doi: 10.11862/CJIC.20250184

    13. [13]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    14. [14]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    15. [15]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    18. [18]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    19. [19]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    20. [20]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

Metrics
  • PDF Downloads(28)
  • Abstract views(3011)
  • HTML views(204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return