Citation: YANG Pu,  FANG Hao,  MENG Zi-Wei,  ZHENG Ling-Na,  WANG Bing,  WANG Meng,  LIU Guang-Cai,  CHENG Wen-Bo,  FENG Wei-Yue. Determination of Metal-doped Microplastic in Biological Samples by Single Particle-Inductively Coupled Plasma Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(6): 1059-1065. doi: 10.19756/j.issn.0253-3820.231035 shu

Determination of Metal-doped Microplastic in Biological Samples by Single Particle-Inductively Coupled Plasma Time-of-Flight Mass Spectrometry

  • Corresponding author: WANG Meng,  CHENG Wen-Bo, 
  • Received Date: 4 February 2023
    Revised Date: 26 April 2023

    Fund Project: Supported by the Guangdong Basic and Applied Basic Research Fund (No. DG2231351B), the State Key Laboratory of Environmental Chemistry and Ecotoxicology (No. KF2020-19) and the Tianjin Key Laboratory of Medical Mass Spectrometry for Accurate Diagnosis.

  • A new method for analysis of metal-doped polystyrene microplastics in biological samples by single particle-inductively coupled plasma time-of-flight mass spectrometry (SP-ICP-TOF-MS) was developed. Mouse liver samples spiked with the particles were successfully digested using tetramethylammonium hydroxide and hydrogen peroxide. Centrifugal concentration method was used to remove the matrix from the digested solution and to meet the analytical requirements of SP-ICP-TOF-MS. The method achieved recoveries of 102%±11% for microplastic particles. The SP-ICP-TOF-MS achieved detection limits of 0.004-0.026 fg for Ce, Eu, Ho, and Lu in microplastics, and 37 particles/mL for particle number concentration. The developed method provided a new approach to study the environmental impact and toxicology of microplastics.
  • 加载中
    1. [1]

      KOELMANS A A, BESSELING E, FOEKEMA E, KOOI M, MINTENIG S, OSSENDORP B C, REDONDOHASSELERHARM P E, VERSCHOOR A, VAN WEZEL A P, SCHEFFER M. Environ. Sci. Technol., 2017, 51(20):11513-11519.

    2. [2]

      HARTMANN N B, HÜFFER T, THOMPSON R C, HASSELLÖV M, VERSCHOOR A, DAUGAARD A E, RIST S, KARLSSON T, BRENNHOLT N, COLE M, HERRLING M P, HESS M C, IVLEVA N P, LUSHER A L, WAGNER M. Environ. Sci. Technol., 2019, 53(3):1039-1047.

    3. [3]

      NOR N H M, KOOI M, DIEPENS N J, KOELMANS A A. Environ. Sci. Technol., 2021, 55(8):5084-5096.

    4. [4]

      SCHWABL P, KÖPPEL S, KÖNIGSHOFER P, BUCSICS T, TRAUNER M, REIBERGER T, LIEBMANN B. Ann. Intern. Med., 2019, 171(7):453-457.

    5. [5]

      RAGUSA A, SVELATO A, SANTACROCE C, CATALANO P, NOTARSTEFANO V, CARNEVALI O, PAPA F, RONGIOLETTI M C A, BAIOCCO F, DRAGHI S, D'AMORE E, RINALDO D, MATTA M, GIORGINI E. Environ. Int., 2021, 146:106274.

    6. [6]

      LEHNER R, WEDER C, PETRI-FINK A, ROTHEN-RUTISHAUSER B. Environ. Sci. Technol., 2019, 53(4):1748-1765.

    7. [7]

      CAI H, XU E G, DU F, LI R, LIU J, SHI H. Chem. Eng. J., 2021, 410:128208.

    8. [8]

      DAVRANCHE M, LORY C, JUGE C L, BLANCHO F, DIA A, GRASSL B, EL HADRI H, PASCAL P Y, GIGAULT J. Nanoimpact, 2020, 20:100262.

    9. [9]

      LI X, CHEN L, MEI Q, DONG B, DAI X, DING G, ZENG E Y. Water Res., 2018, 142:75-85.

    10. [10]

      JENNER L C, ROTCHELL J M, BENNETT R T, COWEN M, TENTZERIS V, SADOFSKY L R. Sci. Total Environ., 2022, 831:154907.

    11. [11]

      KENNEDY A J, HULL M S, DIAMOND S, CHAPPELL M, BEDNAR A J, LAIRD J G, MELBY N L, STEEVENS J A. Environ. Sci. Technol., 2015, 49(20):12490-12499.

    12. [12]

      POMPA P P, VECCHIO G, GALEONE A, BRUNETTI V, MAIORANO G, SABELLA S, CINGOLANI R. Nanoscale, 2011, 3(7):2889-2897.

    13. [13]

      WITTMAACK K. Environ. Health Persp., 2007, 115(2):187-194.

    14. [14]

      SCHWERTFEGER D M, VELICOGNA J R, JESMER A H, SCROGGINS R P, PRINCZ J I. Anal. Chem., 2016, 88(20):9908-9914.

    15. [15]

    16. [16]

    17. [17]

      LABORDA F, TRUJILLO C, LOBINSKI R. Talanta, 2021, 221:121486.

    18. [18]

      JIMENEZ-LAMANA J, MARIGLIANO L, ALLOUCHE J, GRASSL B, SZPUNAR J, REYNAUD S. Anal. Chem., 2020, 92(17):11664-11672.

    19. [19]

      MITRANO D M, BELTZUNG A, FREHLAND S, SCHMIEDGRUBER M, CINGOLANI A, SCHMIDT F. Nat. Nanotechnol., 2019, 14(4):362-368.

    20. [20]

      ENDERS K, LENZ R, BEER S, STEDMON C A. ICES J. Mar. Sci. 2017, 74(1):326-331.

    21. [21]

      CHANG P P, ZHENG L N, WANG B, CHEN M L, WANG M, WANG J H, FENG W Y. At. Spectrosc., 2022, 43(3):255-265.

    22. [22]

      TIAN X, JIANG H, HU L, WANG M, CUI W, SHI J, LIU G, YIN Y, CAI Y, JIANG G. TrAC, Trends Anal. Chem., 2022, 157:116746.

    23. [23]

    24. [24]

    25. [25]

      MONTANO M D, OLESIK J W, BARBER A G, CHALLIS K, RANVILLE J F. Anal. Bioanal. Chem., 2016, 408(19):5053- 5074.

    26. [26]

      MERRIFIELD R C, STEPHAN C, LEAD J R. Environ. Sci. Technol., 2018, 52(4):2271-2277.

  • 加载中
    1. [1]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    6. [6]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    7. [7]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    8. [8]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    9. [9]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    10. [10]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . 废塑料促进S型NiCr2O4/孪晶Cd0.5Zn0.5S同质异质结光催化产氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    13. [13]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    14. [14]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    15. [15]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    16. [16]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    17. [17]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    18. [18]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

Metrics
  • PDF Downloads(27)
  • Abstract views(1581)
  • HTML views(131)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return