Citation: LI Jia-Min,  LUO Li-Jun,  BI Xiao-Ya,  LIU Xiao-Hong,  LI Li-Bo,  YOU Tian-Yan. Peroxidase-like Catalytic Mechanism of CeO2-based Nanozymes and Their Colorimetric Sensing Applications[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 631-641. doi: 10.19756/j.issn.0253-3820.231024 shu

Peroxidase-like Catalytic Mechanism of CeO2-based Nanozymes and Their Colorimetric Sensing Applications

  • Corresponding author: LUO Li-Jun,  YOU Tian-Yan, 
  • Received Date: 20 January 2023
    Revised Date: 16 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22074055), the Innovation/Entrepreneurship Program of Jiangsu Province and Priority Academic Program Development of Jiangsu Higher Education Institutions (No. PAPD-2018-87) and the Jiangsu Province and Education Ministry Cosponsored Synergistic Innovation Center of Modern Agricultural Equipment (No. XTCX2008).

  • Over the past few decades, a multitude of artificial enzymes have been investigated. With the development of nanoscience, nanozymes have attracted widespread attention of researchers because they can solve the issues of insufficient activity of traditional artificial enzymes. As one of the most interesting and important rare earth oxides in catalysis, CeO2 exhibits excellent peroxidase-like activity due to its fast Ce4+ ↔ Ce3+ redox switch and the existence of related oxygen vacancies. However, the combination of CeO2 with other materials to form CeO2-based nanozymes is beneficial to improve the catalytic performance. This review introduced a variety of CeO2-based nanozymes, discussed their peroxidase-like catalytic mechanisms, kinetics, and colorimetric sensing applications. Finally, the current challenges and potential future directions of CeO2-based nanozymes were summarized.
  • 加载中
    1. [1]

      ZHU Y, YANG Z, SONG L, CHI M, LI M, WANG C, LU X. Part. Part. Syst. Charact., 2018, 35(8):1800049.

    2. [2]

      LI J M, LI L B, BI X Y, LIU X H, LUO L J, YOU T Y. Sens. Actuators, B, 2022, 360:131483.

    3. [3]

      GE J, YANG X, LUO J, MA J, ZOU Y, LI J, LUO W, CHENG X, DENG Y. Appl. Mater. Today, 2019, 15:482-493.

    4. [4]

      ATTAR F, SHAPHAR M G, RASTI B, SHARIFI M, SABOURY A A, REZAYAT S M, FALAHATI M. J. Mol. Liq., 2018, 278:130-144.

    5. [5]

      WANG X Y, GUO W J, HU Y H, WU J J X, WEI H. Nanozymes:Next Wave of Artificial Enzymes, Springer Nature, 2016:2191-5415.

    6. [6]

      WANG X, HU Y, WEI H. Inorg. Chem. Front., 2016, 3(1):41-60.

    7. [7]

      LI Z, YANG X, YANG Y, TAN Y, HE Y, LIU M, LIU X, YUAN Q. Chem. Eur. J., 2018, 24(2):409-415.

    8. [8]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    9. [9]

      LIAN J, LIU P, LI X, GAO L, LUO X, ZHANG X, SHI Z, LIU Q. Appl. Organometal Chem., 2019, 33(5):e4884.

    10. [10]

      GAI P, PU L, WANG C, ZHU D, LI F. Biosens. Bioelectron., 2023, 220:114841.

    11. [11]

      GAO L, ZHUANG J, NIE L, ZHANG J, ZHANG Y, GU N, WANG T, FENG J, YANG D, PERRETT S, YAN X. Nat. Nanotechnol., 2007, 2(9):577-583.

    12. [12]

      ZHANG B L, YU H Y, WANG J Q, WANG W B, ZHANG Q Y, ZHANG H P. J. Am. Ceram. Soc., 2019, 102(4):2218- 2227.

    13. [13]

      JIAO X, SONG H, ZHAO H, BAI W, ZHANG L, LV Y. Anal. Methods, 2012, 4(10):3261-3267.

    14. [14]

      LI H L, GAO H M, FANG H Y, GAO X B, SHI Y H, ZEB A, LI M L. Solid State Sci., 2019, 97:10601.

    15. [15]

      LIU H, DING Y N, YANG B C, LIU Z X, LIU Q Y, ZHANG X. Sens. Actuators, B, 2018, 271:336-345.

    16. [16]

      WANG Q, LIU S, SUN H, LU Q. Ind. Eng. Chem. Res., 2014, 53(19):7917-7922.

    17. [17]

      CAO X, ZHAO S, LIU X, ZHU X, GAO Y, LIU Q. Anal. Bioanal. Chem., 2022, 414(16):4767-4775.

    18. [18]

      LIU X, WANG X, QI C, HAN Q, XIAO W, CAI S, WANG C, YANG R. Appl. Surf. Sci., 2019, 479:532-539.

    19. [19]

      BHAGAT S, VALLABANI N V S, SHUTTHANANDAN V, BOWDEN M, KARAKOTI A S, SINGH S, J. Colloid Interf. Sci., 2018, 513:831-842.

    20. [20]

      LIU C, ZHANG M, GENG H, ZHANG P, ZHENG Z, ZHOU Y, HE W. Appl. Catal., B, 2021, 295:120317.

    21. [21]

      YANG W, LI J, YANG J, LIU Y, XU Z, SUN X, WANG F, NG D H L. J. Alloys Compd., 2020, 815:152276.

    22. [22]

      JAMPAIAH D, REDDY T S, KANDJANI A E, SELVAKANNAN P R, SABRI Y M, COYLE V E, SHUKLA R, BHARGAVA S K. J. Mater. Chem. B, 2016, 4(22):3874-3885.

    23. [23]

      MU J, ZHAO X, LI J, YANG E C, ZHAO X J. Mater. Sci. Eng. C, 2017, 74:434-442.

    24. [24]

      ARTIGLIA L, AGNOLI S, PAGANINI M C, CATTELAN M, GRANOZZI G. ACS Appl. Mater. Interfaces, 2014, 6(22):20130-20136.

    25. [25]

      LIU Q Y, YANG Y T, LV X T, DING Y N, ZHANG Y Z, JING J J, XU C X. Sens. Actuators, B, 2017, 240:726-734.

    26. [26]

      ALIZADEH N, SALIMI A, HALLAJ R. Sens. Actuators, B, 2019, 288:44-45.

    27. [27]

      HUANG F, WANG J, CHEN W, WAN Y, WANG X, CAI N, LIU J, YU F. J. Taiwan Inst. Chem. E., 2018, 83:40-49.

    28. [28]

      ZHAO H, DONG Y, JIANG P, WANG G, ZHANG J. ACS Appl. Mater. Interfaces, 2015, 7(12):6451-6461.

    29. [29]

      JIANG H, WANG B, TANG R, TAN Y, QI M, ZHANG X. Microchem. J., 2023, 185:108251.

    30. [30]

      DONG W, HUANG Y. Microchim. Acta, 2020, 187:11.

    31. [31]

      VINOTHKUMAR G, LALITHA A I, SURESH BABU K. Inorg. Chem., 2019, 58(1):349-358.

    32. [32]

      CHENG X, HUANG L, YANG X, ELZATAHRY A A, ALGHAMDI A, DENG Y. J. Colloid Interf. Sci., 2019, 535:425- 435.

    33. [33]

      LIAN J, LIU P, JIN C, SHI Z, LUO X, LIU Q. Microchim. Acta, 2019, 186(6):332.

    34. [34]

      LIAN J J, LIU P, LI X C, BIAN B, ZHANG X X, LIU Z X, ZHANG X, FAN G C, GAO L N, LIU Q Y. Colloids Surf., A, 2019, 565:1-7.

    35. [35]

      SUN L F, DING Y Y, JIANG Y L, LIU Q Y. Sens. Actuators, B, 2017, 239:848-856.

    36. [36]

      YANG T, LIU X, ZENG Z, WANG X, ZHANG P, FENG B, TIAN K, QING T. Environ. Pollut., 2023, 316:120643.

    37. [37]

      ALIZADEH N, SALIMI A, HALLAJ R. Talanta, 2018, 189:100-110.

    38. [38]

      WANG N, SUN J, CHEN L, FAN H, AI S. Microchim. Acta, 2015, 182:1733-1738.

    39. [39]

      TIAN Z, LI J, ZHANG Z, GAO W, ZHOU X, QU Y. Biomaterials, 2015, 59:116-124.

    40. [40]

      JAMPAIAH D, SRINIVASA REDDY T, COYLE V E, NAFADY A, BHARGAVA S K. J. Mater. Chem. B, 2017, 5(4):720- 730.

    41. [41]

      CHI M, ZHU Y, YANG Z, GAO M, CHEN S, SONG N, WANG C, LU X. Nanotechnology, 2017, 28(29):295704.

    42. [42]

      MU Z, WU S, GUO J, ZHAO M, WANG Y. ACS Sustainable Chem. Eng., 2022, 10(9):2984-2993.

    43. [43]

      ZHANG L L, PAN J, LONG Y, LI J, LI W, SONG S Y, SHI Z, ZHANG H J. Small, 2019, 15(43):1903182.

    44. [44]

      WANG N, DUAN J, SHI W, ZHAI X, GUAN F, YANG L, HOU B. Microchim. Acta, 2018, 185(9):417.

    45. [45]

      LIAN J, LIU P, LIU Q. J. Hazard. Mater., 2022, 433:128766.

    46. [46]

      SHEN Y, WEI Y, GAO X, NIE C, WANG J, WU Y. Environ. Sci. Technol., 2023, 57(4):1680-1691.

    47. [47]

      HASSANZADEH J, AL LAWATI H A J, BAGHERI N. Biosens. Bioelectron., 2022, 207:114184.

  • 加载中
    1. [1]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    2. [2]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    7. [7]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Lin LILe CHENLingjie HOUJiaqi JINGJiayu DINGTao ZHOURuiping ZHANG . Smartphone-assisted fluorescent silver nanoclusters as ratiometric sensor for visual colorimetric detection of sulfide. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2261-2271. doi: 10.11862/CJIC.20250130

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    19. [19]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(48)
  • Abstract views(4359)
  • HTML views(284)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return