Citation: LI Zi-Hao,  JIANG Xiu-E. In-situ Techniques for Revealing Growth Mechanism of Metal-organic Frameworks[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 790-799. doi: 10.19756/j.issn.0253-3820.231017 shu

In-situ Techniques for Revealing Growth Mechanism of Metal-organic Frameworks

  • Corresponding author: JIANG Xiu-E, jiangxiue@ciac.ac.cn
  • Received Date: 15 January 2023
    Revised Date: 3 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22025406) and the Inter-Government International Science and Technology Innovation Cooperation Project from Ministry of Science and Technology of China (No. 2022YFE0113000).

  • Metal-organic frameworks (MOFs) are a class of nanoporous materials, popularized over the past 20 years, and have a wide range of applications in many fields such as catalysis, adsorption, separation and so on. The realization of the above functions is closely related to the structure of MOFs, and understanding the growth mechanism of MOFs in solution is critical to control the structure and function of MOFs. However, relevant studies are insufficient. This review summarized the researches on the nucleation and growth of MOFs using the advanced in-situ techniques in recent years, and briefly summarized the growth mechanism of MOFs. Finally, the development trend of the research on the growth mechanism of MOFs was prospected.
  • 加载中
    1. [1]

      FURUKAWA H, CORDOVA K E, O'KEEFFE M, YAGHI O M. Science, 2013, 341(6149):1230444.

    2. [2]

      CHEETHAM A K, RAO C N R, FELLER R K. Chem. Commun., 2006, 46(46):4780-4795.

    3. [3]

      MOOSAVI S M, NANDY A, JABLONKA K M, ONGARI D, JANET J P, BOYD P G, LEE Y, SMIT B, KULIK H J. Nat. Commun., 2020, 11(1):4068.

    4. [4]

      ZHANG X, MADDOCK J, NENOFF T M, DENECKE M A, YANG S, SCHRÖDER M. Chem. Soc. Rev., 2022, 51(8):3243-3262.

    5. [5]

      ZENG H, XIE M, WANG T, WEI R J, XIE X J, ZHAO Y, LU W, LI D. Nature, 2021, 595(7868):542-548.

    6. [6]

      KONDO Y, KUWAHARA Y, MORI K, YAMASHITA H. Chem, 2022, 8(11):2924-2938.

    7. [7]

      ZHAO Y, ZENG H, ZHU X W, LU W, LI D. Chem. Soc. Rev., 2021, 50(7):4484-4513.

    8. [8]

      ZHAO R, LIANG Z, ZOU R, XU Q. Joule, 2018, 2(11):2235-2259.

    9. [9]

      VAN VLEET M J, WENG T, LI X, SCHMIDT J R. Chem. Rev., 2018, 118(7):3681-3721.

    10. [10]

      WANG Y, LI L, LIANG H, XING Y, YAN L, DAI P, GU X, ZHAO G, ZHAO X. ACS Nano, 2019, 13(3):2901-2912.

    11. [11]

      LAN X, HUANG N, WANG J, WANG T. Chem. Commun., 2018, 54(6):584-587.

    12. [12]

      CERASALE D J, WARD D C, EASUN T L. Nat. Rev. Chem., 2022, 6(1):9-30.

    13. [13]

      LI J, GONG J. Energy Environ. Sci., 2020, 13(11):3748-3779.

    14. [14]

      SHEPPARD C J R. Appl. Sci., 2021, 11(19):8981.

    15. [15]

      HAGUENAU F, HAWKES P W, HUTCHISON J L, SATIAT-JEUNEMAÎTRE B, SIMON G T, WILLIAMS D B. Microsc. Microanal., 2003, 9(2):96-138.

    16. [16]

      WILLIAMS D B, CARTER C B. The Transmission Electron Microscope. In:Williams D B, Carter C B eds. Transmission Electron Microscopy:A Textbook for Materials Science Boston, MA:Springer US 2009:3-22.

    17. [17]

      KIM B H, YANG J, LEE D, CHOI B K, HYEON T, PARK J. Adv. Mater., 2018, 30(4):1703316.

    18. [18]

      ZHU Y, CISTON J, ZHENG B, MIAO X, CZARNIK C, PAN Y, SOUGRAT R, LAI Z, HSIUNG C E, YAO K, PINNAU I, PAN M, HAN Y. Nat. Mater., 2017, 16(5):532-536.

    19. [19]

      LIU X, CHEE S W, RAJ S, SAWCZYK M, KRÁL P, MIRSAIDOV U. Proc. Natl. Acad. Sci. U.S.A., 2021, 118(10):e2008880118.

    20. [20]

      BUTT H J, JASCHKE M, DUCKER W. Bioelectrochem. Bioenerg., 1995, 38(1):191-201.

    21. [21]

      GARCIA R, HERRUZO E T. Nat. Nanotechnol., 2012, 7(4):217-226.

    22. [22]

      SUMMERFIELD A, CEBULA I, SCHRÖDER M, BETON P H. J. Phys. Chem. C, 2015, 119(41):23544-23551.

    23. [23]

      SZELAGOWSKA-KUNSTMAN K, CYGANIK P, GORYL M, ZACHER D, PUTEROVA Z, FISCHER R A, SZYMONSKI M. J. Am. Chem. Soc., 2008, 130(44):14446-14447.

    24. [24]

      RYNIEWICZ A M, RYNIEWICZ A, RYNIEWICZ W, GASKA A. J. Phys.:Conf. Ser., 2010, 238:012059.

    25. [25]

      MANDEMAKER L D B, FILEZ M, DELEN G, TAN H, ZHANG X, LOHSE D, WECKHUYSEN B M. J. Phys. Chem. Lett., 2018, 9(8):1838-1844.

    26. [26]

      OHNSORG M L, BEAUDOIN C K, ANDERSON M E. Langmuir, 2015, 31(22):6114-6121.

    27. [27]

      WANG H, ZHANG T, ZHOU X. J. Phys.:Condens. Matter, 2019, 31(47):473001.

    28. [28]

      HAN J, HE X, LIU J, MING R, LIN M, LI H, ZHOU X, DENG H. Chem, 2022, 8(6):1637-1657.

    29. [29]

      HADJIIVANOV K I, PANAYOTOV D A, MIHAYLOV M Y, IVANOVA E Z, CHAKAROVA K K, ANDONOVA S M, DRENCHEV N L. Chem. Rev., 2021, 121(3):1286-1424.

    30. [30]

      BEHROOZMAND A A, KEATING K, AUKEN E. Surv. Geophys., 2015, 36(1):27-85.

    31. [31]

      BONHOMME C, GERVAIS C, LAURENCIN D. Prog. Nucl. Magn. Reson. Spectrosc., 2014, 77:1-48.

    32. [32]

      ZIA K, SIDDIQUI T, ALI S, FAROOQ I, ZAFAR M S, KHURSHID Z. Eur. J. Dent., 2019, 13(1):124-128.

    33. [33]

      RATHKE J W, KLINGLER R J, GERALD II R E, KRAMARZ K W, WOELK K. Prog. Nucl. Magn. Reson. Spectrosc., 1997, 30(3-4):209-253.

    34. [34]

      PECHER O, VYALIKH A, GREY C P. AIP Conf. Proc., 2016, 1765(1):020011.

    35. [35]

      JONES C L, HUGHES C E, YEUNG H H M, PAUL A, HARRIS K D M, EASUN T L. Chem. Sci., 2021, 12(4):1486-1494.

    36. [36]

      LARKIN P J. Chapter 2-Basic Principles. In:Larkin P J Ed. Infrared and Raman Spectroscopy (Second Edition):Elsevier, 2018:7-28.

    37. [37]

      FAID A Y, BARNETT A O, SELAND F, SUNDE S. Electrochim. Acta, 2020, 361:137040.

    38. [38]

      EMBRECHTS H, KRIESTEN M, ERMER M, PEUKERT W, HARTMANN M, DISTASO M. RSC Adv., 2020, 10(13):7336-7348.

    39. [39]

      LI Z, WU Y, LI J, ZHANG Y, ZOU X, LI F. Chem. Eur. J., 2015, 21(18):6913-6920.

    40. [40]

      LI Y, CAO Y, GUO Y. Chin. J. Chem., 2020, 38(1):25-38.

    41. [41]

      CHEN G, FAN M, LIU Y, SUN B, LIU M, WU J, LI N, GUO M. Front. Chem., 2019, 7:703.

    42. [42]

      HALE O J, COOPER H J. Biochem. Soc. Trans., 2020, 48(1):317-326.

    43. [43]

      SALIONOV D, SEMIVRAZHSKAYA O O, CASATI N P M, RANOCCHIARI M, BJELIĆ S, VEREL R, VAN BOKHOVEN J A, SUSHKEVICH V L. Nat. Commun., 2022, 13(1):3762.

    44. [44]

      CIPELLETTI L, TRAPPE V, PINE D J. Scattering Techniques. Fluids, Colloids and Soft Materials, 2016:131-148.

    45. [45]

      VAN CLEUVENBERGEN S, SMITH Z J, DESCHAUME O, BARTIC C, WACHSMANN-HOGIU S, VERBIEST T, VAN DER VEEN M A. Nat. Commun., 2018, 9(1):3418.

    46. [46]

      ZHANG J P, LIAO P Q, ZHOU H L, LIN R B, CHEN X M. Chem. Soc. Rev., 2014, 43(16):5789-5814.

    47. [47]

      MANOVA D, MÄNDL S. J. Appl. Phys., 2019, 126(20):200901.

    48. [48]

      YEUNG H H M, SAPNIK A F, MASSINGBERD-MUNDY F, GAULTOIS M W, WU Y, FRASER D A X, HENKE S, PALLACH R, HEIDENREICH N, MAGDYSYUK O V, VO N T, GOODWIN A L. Angew. Chem. Int. Ed., 2019, 58(2):566-571.

    49. [49]

      YONEYA M, TSUZUKI S, AOYAGI M. Phys. Chem. Chem. Phys., 2015, 17(14):8649-8652.

    50. [50]

      AMIRJALAYER S, TAFIPOLSKY M, SCHMID R. J. Phys. Chem. Lett., 2014, 5(18):3206-3210.

    51. [51]

      CANTU D C, MCGRAIL B P, GLEZAKOU V A. Chem. Mater., 2014, 26(22):6401-6409.

    52. [52]

      SHU C H, HE Y, ZHANG R X, CHEN J L, WANG A, LIU P N. J. Am. Chem. Soc., 2020, 142(39):16579-16586.

  • 加载中
    1. [1]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    2. [2]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    3. [3]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    4. [4]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    5. [5]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    6. [6]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    7. [7]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    8. [8]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    9. [9]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    12. [12]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    13. [13]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    14. [14]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    18. [18]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    19. [19]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

Metrics
  • PDF Downloads(14)
  • Abstract views(2475)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return