Citation: GUO Hao-Ran,  TANG Ji-Lin. Recent Progress of Atomic Force Microscopy for in Situ Electrochemical Studies[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 733-743. doi: 10.19756/j.issn.0253-3820.231014 shu

Recent Progress of Atomic Force Microscopy for in Situ Electrochemical Studies

  • Corresponding author: TANG Ji-Lin, jltang@ciac.ac.cn
  • Received Date: 24 February 2023
    Revised Date: 10 April 2023

    Fund Project: Supported by the Science and Technology Development Plan of Jilin Province, China (No. 20200801052GH).

  • The evolution of the morphological and mechanical properties of the solid-liquid interface of electrode materials during the electrochemical process is often directly related to the changes in the properties of the materials, and it is attracting more and more attention. Atomic force microscopy (AFM) is an imaging tool that acquires the surface morphology of a sample by monitoring the interaction force between the probe and the sample. It is also an essential platform for the in situ investigation of the morphological evolution and surface mechanical properties changes, benefiting from the high resolution and insitu operation under fluid. In recent years, electrode materials related to batteries, supercapacitors and electrocatalysis have become a hot area of electrochemical study. Meanwhile, the characterization of the evolution of material morphological and mechanical properties in situ using AFM has played a crucial role in the study of the structure-function relationship of electrode materials, providing new ideas for the development and optimization of new materials for electrodes. In this review, we summarized the research progress on the in situ AFM in various types of batteries, supercapacitors, and electrocatalytic electrodes.
  • 加载中
    1. [1]

      YANG Y, PELTIER C R, ZENG R, SCHIMMENTI R, LI Q, HUANG X, YAN Z, POTSI G, SELHORST R, LU X, XU W, TADER M, SOUDACKOV A V, ZHANG H, KRUMOV M, MURRAY E, XU P, HITT J, XU L, KO H Y, ERNST B G, BUNDSCHU C, LUO A, MARKOVICH D, HU M, HE C, WANG H, FANG J, DISTASIO JR. R A, KOURKOUTIS L F, SINGER A, NOONAN K J T, XIAO L, ZHUANG L, PIVOVAR B S, ZELENAY P, HERRERO E, FELIU J M, SUNTIVICH J, GIANNELIS E P, HAMMES-SCHIFFER S, ARIAS T, MAVRIKAKIS M, MALLOUK T E, BROCK J D, MULLER D A, DISALVO F J, COATES G W, ABRUÑA H D. Chem. Rev., 2022, 122(6):6117-6321.

    2. [2]

      SIMON P, GOGOTSI Y. Nat. Mater, 2008, 7(11):845-854.

    3. [3]

      FAN E, LI L, WANG Z, LIN J, HUANG Y, YAO Y, CHEN R, WU F. Chem. Rev., 2020, 120(14):7020-7063.

    4. [4]

      LI X, WANG S, LI L, SUN Y, XIE Y. J. Am. Chem. Soc., 2020, 142(21):9567-9581.

    5. [5]

      YANG S, MIN X, FAN H, XIAO J, LIU Y, MI R, WU X, HUANG Z, XI K, FANG M. J. Mater. Chem. A, 2022, 10(35):17917-17947.

    6. [6]

      BINNIG G, QUATE C F, GERBER C. Phys. Rev. Lett., 1986, 56(9):930-933.

    7. [7]

      XU K, SUN W, SHAO Y, WEI F, ZHANG X, WANG W, LI P. Nanotechnol. Rev., 2018, 7(6):605-621.

    8. [8]

      LIANG Y, PFISTERER J H K, MCLAUGHLIN D, CSOKLICH C, SEIDL L, BANDARENKA A S, SCHNEIDER O. Small Methods, 2019, 3(8):1800387.

    9. [9]

      CHEN H, QIN Z, HE M, LIU Y, WU Z. Materials, 2020, 13(3):668.

    10. [10]

      ZHANG Z, SAID S, SMITH K, JERVIS R, HOWARD C A, SHEARING P R, BRETT D J L, MILLER T S. Adv. Energy Mater., 2021, 11(38):2101518.

    11. [11]

      JENA K K, ALFANTAZI A, MAYYAS A T. Energy Fuels, 2021, 35(22):18257-18284.

    12. [12]

      ZHANG J N, LI Q H, WANG Y, ZHENG J Y, YU X Q, LI H. Energy Storage Mater., 2018, 14:1-7.

    13. [13]

      LI Q, WANG Y, WANG X, SUN X, ZHANG J N, YU X, LI H. ACS Appl. Mater. Interfaces, 2020, 12(2):2319-2326.

    14. [14]

      GUO H J, WANG H X, GUO Y J, LIU G X, WAN J, SONG Y X, YANG X A, JIA F F, WANG F Y, GUO Y G, WEN R, WAN L J. J. Am. Chem. Soc., 2020, 142(49):20752-20762.

    15. [15]

      LU W, ZHANG J, XU J, WU X, CHEN L. ACS Appl. Mater. Interfaces, 2017, 9(22):19313-19318.

    16. [16]

      WANG Z, SUN Z, LI J, SHI Y, SUN C, AN B, CHENG H M, LI F. Chem. Soc. Rev., 2021, 50(5):3178-3210.

    17. [17]

      VERMA P, MAIRE P, NOVÁK P. Electrochim. Acta, 2010, 55(22):6332-6341.

    18. [18]

      SHEN C, HU G, CHEONG L, HUANG S, ZHANG J, WANG D. Small Methods, 2018, 2(2):1700298.

    19. [19]

      ZHU H, RUSSELL J A, FANG Z, BARNES P, LI L, EFAW C M, MUENZER A, MAY J, HAMAL K, CHENG I F, DAVIS P H, DUFEK E J, XIONG H. Small, 2021, 17(52):2105292.

    20. [20]

      BENNING S, CHEN C, EICHEL R A, NOTTEN P H L, HAUSEN F. ACS Appl. Energy Mater., 2019, 2(9):6761-6767.

    21. [21]

      ZHAO R, WANG S, LIU D, LIU Y, LV X, ZENG X, LI B. ACS Appl. Energy Mater., 2021, 4(1):492-499.

    22. [22]

      GALLAGHER K G, GOEBEL S, GRESZLER T, MATHIAS M, OELERICH W, EROGLU D, SRINIVASAN V. Energy Environ. Sci., 2014, 7(5):1555-1563.

    23. [23]

      GIRISHKUMAR G, MCCLOSKEY B, LUNTZ A C, SWANSON S, WILCKE W. J. Phys. Chem. Lett., 2010, 1(14):2193-2203.

    24. [24]

      SHEN Z Z, LANG S Y, SHI Y, MA J M, WEN R, WAN L J. J. Am. Chem. Soc., 2019, 141(17):6900-6905.

    25. [25]

      HONG M, YANG C, WONG R A, NAKAO A, CHOI H C, BYON H R. J. Am. Chem. Soc., 2018, 140(20):6190-6193.

    26. [26]

      CORTES H A, CORTI H R. Ultramicroscopy, 2021, 230:113369.

    27. [27]

      DENG R, WANG M, YU H, LUO S, LI J, CHU F, LIU B, WU F. Energy Environ. Mater., 2022, 5(3):777-799.

    28. [28]

      YIN Y X, XIN S, GUO Y G, WAN L J. Angew. Chem. Int. Ed., 2013, 52(50):13186-13200.

    29. [29]

      LANG S Y, SHI Y, GUO Y G, WANG D, WEN R, WAN L J. Angew. Chem. Int. Ed., 2016, 55(51):15835-15839.

    30. [30]

      LANG S Y, SHI Y, GUO Y G, WEN R, WAN L J. Angew. Chem. Int. Ed., 2017, 56(46):14433-14437.

    31. [31]

      HUANG F, LI X, ZHANG Y, JIE Y, MU X, YANG C, LI W, CHEN Y, LIU Y, WANG S, GE B, CAO R, REN X, YAN P, LI Q, XU D, JIAO S. Adv. Mater., 2022, 34(34):2203710.

    32. [32]

      GUO X, ZHANG Z, LI J, LUO N, CHAI G L, MILLER T S, LAI F, SHEARING P, BRETT D J L, HAN D, WENG Z, HE G, PARKIN I P. ACS Energy Lett., 2021, 6(2):395-403.

    33. [33]

      ZHANG X, YANG J, REN Z, XIE K, YE Q, XU F, LIU X. New Carbon Mater., 2022, 37(2):371-379.

    34. [34]

      POONAM, SHARMA K, ARORA A, TRIPATHI S K. J. Energy Storage, 2019, 21:801-825.

    35. [35]

      TAO X Y, DU J, SUN Y, ZHOU S L, XIA Y, HUANG H, GAN Y P, ZHANG W K, LI X D. Adv. Funct. Mater., 2013, 23(37):4745-4751.

    36. [36]

      BLACK J M, FENG G, FULVIO P F, HILLESHEIM P C, DAI S, GOGOTSI Y, CUMMINGS P T, KALININ S V, BALKE N. Adv. Energy Mater., 2014, 4(3):1300683.

    37. [37]

      CUI X, ZHANG L, ZHANG J, GONG L, GAO M, ZHENG P, XIANG L, WANG W, HU W, XU Q, WEI W, ZENG H. Nano Energy, 2019, 59:102-109.

    38. [38]

      GUAN Y, ZHANG M, QIN J, GUO X, LI Z, ZHANG B, TANG J. J. Phys. Chem. C, 2021, 125(23):12811-12818.

    39. [39]

      GUAN Y, QIN J, GUO X, LI Z, GUO H, ZHANG M, ZHANG B, TANG J. ACS Appl. Energy Mater., 2022, 5(10):12305- 12314.

    40. [40]

      QIAO J, LIU Y, HONG F, ZHANG J. Chem. Soc. Rev., 2014, 43(2):631-675.

    41. [41]

      GROSSE P, GAO D, SCHOLTEN F, SINEV I, MISTRY H, ROLDAN CUENYA B. Angew. Chem. Int. Ed., 2018, 57(21):6192-6197.

    42. [42]

      SIMON G H, KLEY C S, ROLDAN CUENYA B. Angew. Chem. Int. Ed., 2021, 60(5):2561-2568.

    43. [43]

      NESBITT N T, SMITH W A. J. Electrochem. Soc., 2021, 168(4):044505.

    44. [44]

      DEBE M K. Nature, 2012, 486(7401):43-51.

    45. [45]

      DENG X, GALLI F, KOPER M T M. ACS Appl. Energy Mater., 2020, 3:597-602.

    46. [46]

      DENG X, GALLI F, KOPER M T M. J. Am. Chem. Soc., 2018, 140(41):13285-13291.

    47. [47]

      STAMENKOVIC V R, MUN B S, ARENZ M, MAYRHOFER K J J, LUCAS C A, WANG G, ROSS P N, MARKOVIC N M. Nat. Mater., 2007, 6(3):241-247.

    48. [48]

      KHALAKHAN I, VOROKHTA M, VÁCLAVŮ M, ŠMÍD B, LAVKOVÁ J, MATOLÍNOVÁ I, FIALA R, TSUD N, SKÁLA T, MATOLÍN V. Electrochim. Acta, 2016, 211:52-58.

    49. [49]

      KHALAKHAN I, BOGAR M, VOROKHTA M, KÚŠ P, YAKOVLEV Y, DOPITA M, SANDBECK D J S, CHEREVKO S, MATOLÍNOVÁ I, AMENITSCH H. ACS Appl. Mater. Interfaces, 2020, 12(15):17602-17610.

  • 加载中
    1. [1]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    2. [2]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    4. [4]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    5. [5]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    6. [6]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    11. [11]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    12. [12]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    18. [18]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

Metrics
  • PDF Downloads(18)
  • Abstract views(2209)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return