Citation: LIU Hui-Min,  LAN Yong-Bo,  ZHAO Chao-Yue,  BAI Tian-Hou,  LIU Ji-Feng. Preparation of Cellulose/Iron Metal Organic Framework Loaded Peptide Composites and Their Adsorption Performances for Perfluorooctanoic Acid from Aqueous Environment[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 860-873. doi: 10.19756/j.issn.0253-3820.231006 shu

Preparation of Cellulose/Iron Metal Organic Framework Loaded Peptide Composites and Their Adsorption Performances for Perfluorooctanoic Acid from Aqueous Environment

  • Corresponding author: LIU Ji-Feng, 
  • Received Date: 5 January 2023
    Revised Date: 28 February 2023

    Fund Project: Supported by the National Key Research and Development Project of China (No. 2020YFF0305002).

  • A composite material for selective enrichment of perfluorooctanoic acid (PFOA) in aqueous environment was prepared by using the carboxymethyl cellulose/Fe metal organic framework composite aerogel (CMC/MOF) immobilized with andpolypeptide (PEP) as the matrix. The physical and chemical properties of the composite were characterized by scanning electron microscopy, infrared spectroscopy, X-ray diffraction and thermogravimetry. The results showed that the combination of MOF and CMC aerogel material was stable, and the polypeptide selectively combined PFOA on the surface of MOF material through covalent bond. The material had porous structure, uniform morphology and stable crystalline structure. In addition, the adsorption performance of the composite for PFOA was studied by kinetic adsorption and thermodynamic adsorption. The results showed that the adsorption capacity of PFOA was 27.2 mg/g, the adsorption behavior conformed to the Pseudo second-order model and Langmuir isotherm adsorption model, and the adsorption rate tended to single-layer chemical adsorption. The adsorption efficiency of the composite material for PFOA was more than 80% within the concentration range of 50 mg/L, showing that the composite material could be used for the pretreatment of PFOA in real samples.
  • 加载中
    1. [1]

      HE J, GOMENIUC A, OLSHANSKY Y, HATTON J, ABRELL L, FIELD J A, CHOROVER J, SIERRA-ALVAREZ R. Chem. Eng. J., 2022, 446:137246.

    2. [2]

      FAN L, DUAN H L, WANG J, LIN Y M, SUN J N, ZHANG Z Q. J. Hazard. Mater., 2021, 420:126659.

    3. [3]

      HE X, HE Y, HUANG S, FANG Z, LIU J, MA M, CHEN B. J. Chromatogr. A, 2019, 1601:79-85.

    4. [4]

      MORO G, BOTTARI F, LIBERI S, COVACEUSZACH S, CASSETTA A, ANGELINI A, DE WAEL K, MORETTO L M. Bioelectrochemistry, 2020, 134:107540.

    5. [5]

      VU C T, WU T T. Environ. Sci:Water Res. Technol., 2020, 6(11):2958-2972.

    6. [6]

      GAGLIANO E, SGROI M, FALCIGLIA P P, VAGLIASINDI F G A, ROCCARO P. Water Res., 2020, 171:115381.

    7. [7]

      CAO Q, PENG Y, YU Q, SHI Z, JIA Q. Dyes Pigm., 2022, 197:109839.

    8. [8]

      QU S, CAO Q, MA J, JIA Q. Talanta, 2020, 219:121280.

    9. [9]

      YU Q Y, LI Z, CAO Q, QU S M, JIA Q. TrAC, Trends Anal. Chem., 2020, 129:115939.

    10. [10]

      QI H, LI Z, ZHENG H, JIA Q. Anal. Chim. Acta, 2021, 1157:338383.

    11. [11]

      CHENG W W, TANG X Z, ZHANG Y, WU D, YANG W J. Trends Food Sci. Technol., 2021, 112:268-282.

    12. [12]

      RANI P, KASNERYK V, OPANASENKO M. Appl. Mater. Today, 2022, 26:101283.

    13. [13]

      HASSAN N, SHAHAT A, EL-DEEN I M, EL-AFIFY M A M, EL-BINDARY M A. J. Mol. Struct., 2022, 1258:132662.

    14. [14]

      QUEIROS J M, SALAZAR H, VALVERDE A, BOTELHO G, FERNANDEZ D E, LUIS R, TEIXEIRA J, MARTINS P M, LANCEROS-MENDEZ S. Chemosphere, 2022, 307:135922.

    15. [15]

    16. [16]

      YANG W, HAN Y, LI C, ZHU L, SHI L, TANG W, WANG J, YUE T, LI Z. Chem. Eng. J., 2019, 375:122076.

    17. [17]

      WANG Z, SONG L, WANG Y, ZHANG X F, HAO D, FENG Y, YAO J. Chem. Eng. J., 2019, 371:138-144.

    18. [18]

      WANG Y, ZHANG H, KANG Y, CAO J. J. Photochem. Photobiol., B, 2016, 159:66-73.

    19. [19]

      CHEN H, HE P, RAO H, WANG F, LIU H, YAO J. Chemosphere, 2015, 129:217-224.

    20. [20]

      MASO L, TRANDE M, LIBERI S, MORO G, DAEMS E, LINCIANO S, SOBOTT F, COVACEUSZACH S, CASSETTA A, FASOLATO S, MORETTO L M, DE WAEL K, CENDRON L, ANGELINI A. Protein Sci., 2021, 30(4):830-841.

    21. [21]

      LUO Z, SHI X, HU Q, ZHAO B, HUANG M. Chem. Res. Toxicol., 2012, 25(5):990-992.

    22. [22]

      KUMAR A, SHARMA A, DE LA TORRE B G, ALBERICIO F. Green Chem., 2022, 24(12):4887-4896.

    23. [23]

    24. [24]

      JING Y, JIA M, XU Z, XIONG W, YANG Z, PENG H, CAO J, XIANG Y, ZHANG C. J. Hazard. Mater., 2022, 424:127503.

    25. [25]

      HU Y, GUO M, ZHANG S, JIANG W, XIU T, YANG S, KANG M, DONGYE Z, LI Z, WANG L. Microporous Mesoporous Mater., 2022, 333:111740.

    26. [26]

      STEBEL E K, PIKE K A, NGUYEN H, HARTMANN H A, KLONOWSKI M J, LAWRENCE M G, COLLINS R M, HEFNER C E, EDMISTON P L. Environ Sci.:Water Res. Technol., 2019, 5(11):1854-1866.

    27. [27]

      ELANCHEZHIYAN S S, PRABHU S M, HAN J, KIM Y M, YOON Y, PARK C M. Appl. Surf. Sci., 2020, 528:146579.

    28. [28]

      MOKWENA P, OKONKWO O J. Emerging Contam., 2022, 8:75-82.

    29. [29]

      SUN H, CANNON F S, HE X. J. Water Process Eng., 2020, 37:101416.

    30. [30]

      XIE R, ZHOU L, SMITH A E, ALMQUIST C B, BERBERICH J A, DANIELSON N D. J. Hazard. Mater., 2022, 431:128521.

    31. [31]

      ELANCHEZHIYAN S S, PREETHI J, RATHINAM K, NJARAMBA L K, PARK C M. Carbohyd. Polym., 2021, 267:118165.

    32. [32]

      KUCUK C, YURDAKUL S, CELIK S, ERDEM B. Inorg. Chem. Commun., 2022, 145:109935.

  • 加载中
    1. [1]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    2. [2]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    3. [3]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    7. [7]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    8. [8]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    9. [9]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    10. [10]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    11. [11]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    12. [12]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    13. [13]

      Min WANGDehua XINWei ZHANGHaiying YANGYuchun WANGZhaorong LIUMeng SHILe SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    18. [18]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(9)
  • Abstract views(2722)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return