Citation: DING Pi,  DING Zi-Xin,  MA Jia-Ling,  ZHOU Tong-Ping,  PAN Yue,  HU Ming-Chao,  WANG Zhi-Li,  SUN Na,  PEI Ren-Jun. Effective Isolation, Label and Release of Multitype Circulating Tumor Cells Base on CdSe/ZnS Quantum Dots and Dual-antibody Modified Magnetic Nanoparticles[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 821-832. doi: 10.19756/j.issn.0253-3820.221642 shu

Effective Isolation, Label and Release of Multitype Circulating Tumor Cells Base on CdSe/ZnS Quantum Dots and Dual-antibody Modified Magnetic Nanoparticles

  • Corresponding author: WANG Zhi-Li,  SUN Na, 
  • Received Date: 19 December 2022
    Revised Date: 4 March 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 32000984) and the Natural Science Foundation of Jiangsu Province, China (Nos. BK20220099, BE2021665).

  • The identification and dynamic monitoring of circulating tumor cells (CTCs) are of vital importance for clinical diagnosis, prognosis evaluation and personalized therapy of cancer patients. However, during the process of tumor metastasis, epithelial-mesenchymal transition (EMT) may occur, resulting in the loss of the expression of surface protein markers on tumor cells, which makes it difficult to effectively isolate CTCs using traditional enrichment strategies based on a single epithelial characteristic marker. In addition, the immunostaining methods commonly used to identify CTCs require cell fixation, which can only provide limited information on the number of CTCs, thus limiting further biological research on CTCs. To address these issues, this study prepared magnetite nanoparticles (MNPs) with a core-shell structure to enable enrichment, purification and identification of different types of CTCs. The outer layer was decorated with CdSe/ZnS quantum dots (QDs) to enable labeling, while the subsequently modified gelatin layer could suppress non-specific adhesion of blood cells with good performance of thermos-sensitivity for CTC release. Finally, two types of antibodies targeting epithelial cell adhesion molecule (EpCAM) and N-cadherin were modified on the surface of MNPs, creating a simple and efficient platform for CTCs enrichment, labeling and release. The capture efficiency of the platform for epithelial and mesenchymal CTCs reached 85.5% and 92.4%, respectively. In addition, the layer of QDs assembled on the surface of MNPs enabled labeling and identification of target cells without cell fixation and immune-staining processes. After a short time of incubation at 37 ℃, 88% of the captured cells were successfully released due to the conformation change of gelatin molecules on the surface of MNPs, with a cell viability of 94.9%. The platform developed here provided a new strategy for CTC detection in clinical application.
  • 加载中
    1. [1]

      WILLIAMS S C P. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(13):4861.

    2. [2]

      THIELE J A, BETHEL K, KRÁLÍČKOVÁ M, KUHN P. Annu. Rev. Pathol. Mech. Dis., 2017, 12(1):419-447.

    3. [3]

      LIN E, CAO T, NAGRATH S, KING M R. Annu. Rev. Biomed. Eng., 2018, 20(1):329-352.

    4. [4]

      CASTRO-GINER F, ACETO N. Genome Med., 2020, 12(1):31.

    5. [5]

      AHN J C, TENG P, CHEN P, POSADAS E, TSENG H, LU S C, YANG J D. Hepatology, 2021, 73(1):422-436.

    6. [6]

      LALLO A, SCHENK M W, FRESE K K, BLACKHALL F, DIVE C. Transl. Lung Cancer Res., 2017, 6(4):397-408.

    7. [7]

      RAO L, MENG Q F, HUANG Q, WANG Z, YU G T, LI A, MA W, ZHANG N, GUO S S, ZHAO X Z, LIU K, YUAN Y, LIU W. Adv. Funct. Mater., 2018, 28(34):1803531.

    8. [8]

      DONG J, CHEN J F, SMALLEY M, ZHAO M, KE Z, ZHU Y, TSENG H. Adv. Mater., 2020, 32(1):1903663.

    9. [9]

      LI W, LI R, HUANG B, WANG Z X, SUN Y, WEI X Y, HENG C, LIU W, YU M X, GUO S S, ZHAO X Z. Nanotechnology, 2019, 30(33):335201.

    10. [10]

      PARK G S, KWON H, KWAK D W, PARK S Y, KIM M, LEE J H, HAN H, HEO S, LI X S, LEE J H, KIM Y H, LEE J G, YANG W, CHO H Y, KIM S K, KIM K. Nano Lett., 2012, 12(3):1638-1642.

    11. [11]

      ZHANG N, DENG Y, TAI Q, CHENG B, ZHAO L, SHEN Q, HE R, HONG L, LIU W, GUO S, LIU K, TSENG H R, XIONG B, ZHAO X Z. Adv. Mater., 2012, 24(20):2756-2760.

    12. [12]

      ABDOLAHAD M, TAGHINEJAD M, TAGHINEJAD H, JANMALEKI M, MOHAJERZADEH S. Lab Chip, 2012, 12(6):1183-1190.

    13. [13]

      ZHANG P, CHEN L, XU T, LIU H, LIU X, MENG J, YANG G, JIANG L, WANG S. Adv. Mater., 2013, 25(26):3566-3570.

    14. [14]

      CHEN W, WENG S, ZHANG F, ALLEN S, LI X, BAO L, LAM R H W, MACOSKA J A, MERAJVER S D, FU J. ACS Nano, 2013, 7(1):566-575.

    15. [15]

      STOTT S L, HSU C H, TSUKROV D I, YU M, MIYAMOTO D T, WALTMAN B A, ROTHENBERG S M, SHAH A M, SMAS M E, KORIR G K, FLOYD JR. F P, GILMAN A J, LORD J B, WINOKUR D, SPRINGER S, IRIMIA D, NAGRATH S, SEQUIST L V, LEE R J, ISSELBACHER K J, MAHESWARAN S, HABER D A, TONER M. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(43):18392-18397.

    16. [16]

      WANG S, WANG H, JIAO J, CHEN K J, OWENS G E, KAMEI K, SUN J, SHERMAN D J, BEHRENBRUCH C P, WU H, TSENG H R. Angew. Chem. Int. Ed., 2009, 48(47):8970-8973.

    17. [17]

      SHI F, JIA F, WEI Z, MA Y, FANG Z, ZHANG W, HU Z. Proteomics, 2021, 21(3-4):2000060.

    18. [18]

      ZHANG C, GUAN Y, SUN Y, AI D, GUO Q. Cancer Lett., 2016, 374(2):216-223.

    19. [19]

      ALIX-PANABIÈRES C, MADER S, PANTEL K. J. Mol. Med., 2017, 95(2):133-142.

    20. [20]

      JOU H J, LING P Y, HSU H T. Taiwan. J. Obstet. Gynecol., 2022, 61(1):34-39.

    21. [21]

      LI Q, ZHI X, ZHOU J, TAO R, ZHANG J, CHEN P, RØE O D, SUN L, MA L. Oncotarget, 2016, 7(24):36645-36654.

    22. [22]

      QAYYUMI B, BHARDE A, ALAND G, D'SOUZA A, JAYANT S, SINGH N, TRIPATHI S, BADAVE R, KALE N, SINGH B, ARORA S, GORE I, SINGH A, VASUDEVAN A, PRABHASH K, KHANDARE J, CHATURVEDI P. Oral Surg., Oral Med., Oral Pathol., 2022, 134(1):73-83.

    23. [23]

      MESSARITAKIS I, POLITAKI E, KOTSAKIS A, DERMITZAKI E K, KOINIS F, LAGOUDAKI E, KOUTSOPOULOS A, KALLERGI G, SOUGLAKOS J, GEORGOULIAS V. PLoS One, 2017, 12(7):e0181211.

    24. [24]

      SONG H, SU Y, ZHANG L, LV Y. Luminescence, 2019, 34(6):530-543.

    25. [25]

      PLESKOVA S, MIKHEEVA E, GORNOSTAEVA E. Adv. Exp. Med. Biol., 2018, 1048:323-334.

    26. [26]

      GUO X, WU Z, LI W, WANG Z, LI Q, KONG F, ZHANG H, ZHU X, DU Y P, JIN Y, DU Y, YOU J. ACS Appl. Mater. Interfaces, 2016, 8(5):3092-3106.

  • 加载中
    1. [1]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    2. [2]

      Wei Huang Weiwei Chen Yongxing Tang . Green Mountains and Blue Waters Spanning Nine Centuries: Decrypting “The Picture of a Thousand Miles of Rivers and Mountains” from a Chemical Perspective. University Chemistry, 2024, 39(9): 189-195. doi: 10.12461/PKU.DXHX202312075

    3. [3]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    4. [4]

      Ruoxi RUNJikai ZHULixia HANZhiyin XIAOXiujuan JIANGJing JIN . Red light-induced CO-release from manganese carbonyl complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2575-2583. doi: 10.11862/CJIC.20250132

    5. [5]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    8. [8]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    9. [9]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    10. [10]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    11. [11]

      Ying Yang Yonghan Wu Zixuan Li Lu Zhang Rongqin Lin Yefan Zhang Jiquan Liu Xiaohui Ning Yan Li Bin Cui . Visualization Simulation Experiment of Cyclic Voltammetry (CV) Based on Python. University Chemistry, 2025, 40(10): 233-242. doi: 10.12461/PKU.DXHX202412024

    12. [12]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    13. [13]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    16. [16]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    17. [17]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    18. [18]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

Metrics
  • PDF Downloads(16)
  • Abstract views(2688)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return