Citation:
SONG Zhong-Qian, LI Wei-Yan, BAO Yu, LIU Zhen-Bang, SUN Zhong-Hui, NIU Li. Research Progress of Wearable Self-Powered Electrochemical Sensors[J]. Chinese Journal of Analytical Chemistry,
;2023, 51(5): 769-776.
doi:
10.19756/j.issn.0253-3820.221632
-
As one of the important branches of wearable electronics, wearable chemical sensors can be used to detect and analyze the chemical components in human bodies and their surrounding environments in continuous and real-time manner, exhibiting great potential in health monitoring, medical diagnosis and environmental protection. However, it is still challenging to develop the matched wearable energy supply devices with high energy density and comfortability. To achieve the continuous and real-time electrochemical monitoring, wearable chemical sensors with self-powered characteristics is a possible strategy to solve the above limitations. Hence, this review first introduced the classification and working principle of wearable self-powered chemical sensors, and then summarized the current research and application progress of wearable self-powered chemical sensors. Finally, the challenge and the existing issues of self-powered wearable chemical sensors were discussed. The review provided a reference for the energy supply selection of wearable electronics and the development of new selfpowered sensors.
-
Keywords:
- Wearable electronics,
- Self-powered,
- Chemical sensors,
- Review
-
-
-
[1]
BARIYA M, NYEIN H Y Y, JAVEY A. Nat. Electron., 2018, 1(3):160-171.
-
[2]
-
[3]
SONG Y, MIN J, YU Y, WANG H, YANG Y, ZHANG H, GAO W. Sci. Adv., 2020, 6(40):eaay9842.
-
[4]
NGUYEN J T, CHENG W. Small Struct., 2022, 3(8):2200034.
-
[5]
LI W, SONG Z, KONG H, CHEN M, LIU S, BAO Y, MA Y, SUN Z, LIU Z, WANG W, NIU L. Nano Energy, 2022, 104:107935.
-
[6]
KANOKPAKA P, CHANG L Y, WANG B C, HUANG T H, SHIH M J, HUNG W S, LAI J Y, HO K C, YEH M H. Nano Energy, 2022, 100:107464.
-
[7]
LIU Z, ZHENG K, HU L, LIU J, QIU C, ZHOU H, HUANG H, YANG H, LI M, GU C, XIE S, QIAO L, SUN L. Adv. Mater., 2010, 22(9):999-1003.
-
[8]
XU S, QIN Y, XU C, WEI Y, YANG R, WANG Z L. Nat. Nanotechnol., 2010, 5(5):366-373.
-
[9]
VIJJAPU M T, SURYA S G, HE J H, SALAMA K N. ACS Appl. Mater. Interfaces, 2021, 13(34):40460-40470.
-
[10]
ZHAO Y, LIU L, ZHANG F, DI C, ZHU D. SmartMat, 2021, 2(4):426-445.
-
[11]
LI Z, CHEN J, GUO H, FAN X, WEN Z, YEH M H, YU C, CAO X, WANG Z L. Adv. Mater., 2016, 28(15):2983-2991.
-
[12]
MENG J, LI H, ZHAO L, LU J, PAN C, ZHANG Y, LI Z. Nano Lett., 2020, 20(7):4968-4974.
-
[13]
SU Y, YANG T, ZHAO X, CAI Z, CHEN G, YAO M, CHEN K, BICK M, WANG J, LI S, XIE G, TAI H, DU X, JIANG Y, CHEN J. Nano Energy, 2020, 74:104941.
-
[14]
HUANG C, CHEN G, NASHALIAN A, CHEN J. Nanoscale, 2021, 13(4):2065-2081.
-
[15]
CUI S, ZHENG Y, ZHANG T, WANG D, ZHOU F, LIU W. Nano Energy, 2018, 49:31-39.
-
[16]
LIU S N, YUAN G T, ZHANG Y, XIE L J, SHEN Q Q, LEI H, WEN Z, SUN X H. Adv. Mater. Technol., 2021, 6(12):2100310.
-
[17]
WANG D, ZHANG D, YANG Y, MI Q, ZHANG J, YU L. ACS Nano, 2021, 15(2):2911-2919.
-
[18]
PARRILLA M, DE WAEL K. Adv. Funct. Mater., 2021, 31(50):2107042.
-
[19]
ZHAO Y, LIU X L, MA S X, WANG W J, NING X J, ZHAO L, ZHUANG J. Sens. Actuators, B, 2021, 340:129985.
-
[20]
MATHUR A, FAN H, MAHESHWARI V. Mater. Adv., 2021, 2(16):5274-5299.
-
[21]
BAG S, DURSTOCK M F. Nano Energy, 2016, 30:542-548.
-
[22]
XIANG S, ZHANG N, FAN X. Adv. Fiber Mater., 2021, 3(2):76-106.
-
[23]
LIN H, WENG W, REN J, QIU L, ZHANG Z, CHEN P, CHEN X, DENG J, WANG Y, PENG H. Adv. Mater., 2014, 26(8):1217-1222.
-
[24]
WU S, LI Z, ZHANG J, WU X, DENG X, LIU Y, ZHOU J, ZHI C, YU X, CHOY W C H, ZHU Z, JEN A K Y. Adv. Mater., 2021, 33(51):2105539.
-
[25]
HASHEMI S A, RAMAKRISHNA S, ABERLE A G. Energy Environ. Sci., 2020, 13(3):685-743.
-
[26]
ZHANG Q, DENG K, WILKENS L, REITH H, NIELSCH K. Nat. Electron., 2022, 5(6):333-347.
-
[27]
KIM J Y, LEE W, KANG Y H, CHO S Y, JANG K S. Carbon, 2018, 133:293-299.
-
[28]
ZHANG F, ZANG Y, HUANG D, DI C A, ZHU D. Nat. Commun., 2015, 6(1):8356.
-
[29]
ZHENG C, XIANG L, JIN W, SHEN H, ZHAO W, ZHANG F, DI C, ZHU D. Adv. Mater. Technol., 2019, 4(8):1900247.
-
[30]
TSAO Y H, HUSAIN R A, LIN Y J, KHAN I, CHEN S W, LIN Z H. Nano Energy, 2019, 62:268-274.
-
[31]
WU Z, ZHANG S, LIU Z, MU E, HU Z. Nano Energy, 2022, 91:106692.
-
[32]
HOSSEIN-BABAEI F, MASOUMI S, AGHILI S, SHOKRANI M. ACS Appl. Electron. Mater., 2021, 3(1):353-361.
-
[33]
JIA Y, JIANG Q, SUN H, LIU P, HU D, PEI Y, LIU W, CRISPIN X, FABIANO S, MA Y, CAO Y. Adv. Mater., 2021, 33(42):2102990.
-
[34]
YU Y, HU Z, LIEN S Y, YU Y, GAO P. ACS Appl. Mater. Interfaces, 2022, 14(42):47696-47705.
-
[35]
ZHU S, FAN Z, FENG B, SHI R, JIANG Z, PENG Y, GAO J, MIAO L, KOUMOTO K. Energies, 2022, 15(9):3375.
-
[36]
NOZARIASBMARZ A, SUAREZ F, DYCUS J H, CABRAL M J, LEBEAU J M, ÖZTÜRK M C, VASHAEE D. Nano Energy, 2020, 67:104265.
-
[37]
WANG Z L, SONG J. Science, 2006, 312(5771):242-246.
-
[38]
LV F, LIN J, ZHOU Z, HONG Z, WU Y, REN Z, ZHANG Q, DONG S, LUO J, SHI J, CHEN R, LIU B, SU Y, HUANG Y. Nano Energy, 2022, 100:107507.
-
[39]
THAKUR P, KOOL A, HOQUE N A, BAGCHI B, KHATUN F, BISWAS P, BRAHMA D, ROY S, BANERJEE S, DAS S. Nano Energy, 2018, 44:456-467.
-
[40]
KONG H, SONG Z, LI W, CHEN M, BAO Y, LIU Z, QU D, MA Y, WANG Z, HAN D, NIU L. Nano Energy, 2022, 100:107498.
-
[41]
SHIN S H, KIM Y H, LEE M H, JUNG J Y, NAH J. ACS Nano, 2014, 8(3):2766-2773.
-
[42]
CAO X, XIONG Y, SUN J, ZHU X, SUN Q, WANG Z L. Adv. Funct. Mater., 2021, 31(33):2102983.
-
[43]
YANG F, LI J, LONG Y, ZHANG Z, WANG L, SUI J, DONG Y, WANG Y, TAYLOR R, NI D, CAI W, WANG P, HACKER T, WANG X. Science, 2021, 373(6552):337-342.
-
[44]
SUI J, LI J, GU L, SCHMIDT C A, ZHANG Z, SHAO Y, GAZIT E, GILBERT P U P A, WANG X. J. Mater. Chem. B, 2022, 10(36):6958-6964.
-
[45]
ZHAO Z, DAI Y, DOU S X, LIANG J. Mater. Today Energy, 2021, 20:100690.
-
[46]
ZHOU Z, DU X, ZHANG Z, LUO J, NIU S, SHEN D, WANG Y, YANG H, ZHANG Q, DONG S. Nano Energy, 2021, 82:105709.
-
[47]
ZI Y, GUO H, WANG J, WEN Z, LI S, HU C, WANG Z L. Nano Energy, 2017, 31:302-310.
-
[48]
HE W, FU X, ZHANG D, ZHANG Q, ZHUO K, YUAN Z, MA R. Nano Energy, 2021, 84:105880.
-
[49]
FAN F R, TANG W, WANG Z L. Adv. Mater., 2016, 28(22):4283-4305.
-
[50]
CHEN C, WEN Z, WEI A, XIE X, ZHAI N, WEI X, PENG M, LIU Y, SUN X, YEOW J T W. Nano Energy, 2019, 62:442-448.
-
[51]
SU Y, WANG J, WANG B, YANG T, YANG B, XIE G, ZHOU Y, ZHANG S, TAI H, CAI Z, CHEN G, JIANG Y, CHEN L Q, CHEN J. ACS Nano, 2020, 14(5):6067-6075.
-
[52]
AARYASHREE, SAHOO S, WALKE P, NAYAK S K, ROUT C S, LATE D J. Nano Res., 2021, 14(11):3669-3689.
-
[53]
NUNEZ C G, MANJAKKAL L, DAHIYA R. NPJ Flex. Electron., 2019, 3(1):1.
-
[54]
SONG Z, LI W, KONG H, BAO Y, WANG N, WANG W, MA Y, HE Y, GAN S, NIU L. Nano Energy, 2022, 92:106759.
-
[55]
KHANDELWAL G, RAJ N P M J, KIM S J. Adv. Energy Mater., 2021, 11(33):2101170.
-
[56]
HE T, GUO X, LEE C. iScience, 2021, 24(1):101934.
-
[57]
CHEN J, WANG Z L. Joule, 2017, 1(3):480-521.
-
[58]
UDDIN A S M I, YAQOOB U, CHUNG G S. ACS Appl. Mater. Interfaces, 2016, 8(44):30079-30089.
-
[59]
CHANG J, MENG H, LI C, GAO J, CHEN S, HU Q, LI H, FENG L. Adv. Mater. Technol., 2020, 5(5):1901087.
-
[60]
WEN Z, CHEN J, YEH M H, GUO H, LI Z, FAN X, ZHANG T, ZHU L, WANG Z L. Nano Energy, 2015, 16:38-46.
-
[61]
LIN Y, DENG P, NIE Y, HU Y, XING L, ZHANG Y, XUE X. Nanoscale, 2014, 6(9):4604-4610.
-
[62]
ZHU D, FU Y, ZANG W, ZHAO Y, XING L, XUE X. Mater. Lett., 2016, 166:288-291.
-
[63]
ZHAO Y, LAI X, DENG P, NIE Y, ZHANG Y, XING L, XUE X. Nanotechnology, 2014, 25(11):115502.
-
[64]
FU Y, NIE Y, ZHAO Y, WANG P, XING L, ZHANG Y, XUE X. ACS Appl. Mater. Interfaces, 2015, 7(19):10482-10490.
-
[65]
LEE J W, JUNG S, LEE T W, JO J, CHAE H Y, CHOI K, KIM J J, LEE J H, YANG C, BAIK J M. Adv. Energy Mater., 2019, 9(36):1901987.
-
[66]
CHEN H, ZHANG M, BO R, BARUGKIN C, ZHENG J, MA Q, HUANG S, HO-BAILLIE A W Y, CATCHPOLE K R, TRICOLI A. Small, 2018, 14(7):1702571.
-
[67]
KAKAVELAKIS G, GAGAOUDAKIS E, PETRIDIS K, PETROMICHELAKI V, BINAS V, KIRIAKIDIS G, KYMAKIS E. ACS Sens., 2018, 3(1):135-142.
-
[68]
ZANG W, NIE Y, ZHU D, DENG P, XING L, XUE X. J. Phys. Chem. C, 2014, 118(17):9209-9216.
-
[69]
KANG K, PARKR I, NA K, LEE J Y. Proceedings IMCS, 2018, 2018:466-467.
-
[70]
LIN Z H, ZHU G, ZHOU Y S, YANG Y, BAI P, CHEN J, WANG Z L. Angew. Chem. Int. Ed., 2013, 52(19):5065-5069.
-
[71]
WU Y, SU Y, BAI J, ZHU G, ZHANG X, LI Z, XIANG Y, SHI J. J. Nanomater., 2016, 2016:5121572.
-
[72]
WANG J, WU Z, PAN L, GAO R, ZHANG B, YANG L, GUO H, LIAO R, WANG Z L. ACS Nano, 2019, 13(2):2587-2598.
-
[73]
SELVARAJAN S, ALLURI N R, CHANDRASEKHAR A, KIM S J. Sens. Actuators, B, 2016, 234:395-403.
-
[74]
ABISEGAPRIYAN K S, RAJ N P M J, ALLURI N R, CHANDRASEKHAR A, KIM S J. Sens. Actuators, B, 2020, 320:128417.
-
[1]
-
-
-
[1]
Yuhang Zhang , Weiwei Zhao , Hongwei Liu , Junpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 100020-0. doi: 10.3866/PKU.WHXB202310004
-
[2]
Lin′an CAO , Dengyue MA , Gang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160
-
[3]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[4]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[5]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046
-
[6]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[7]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[8]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021
-
[9]
Yun Chen , Daijie Deng , Li Xu , Xingwang Zhu , Henan Li , Chengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144
-
[10]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[11]
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
-
[12]
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
-
[13]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[14]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[15]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[16]
Wenxu Liu , Feng Han , Boxuan Wang , Huayi Liu , Xiaobin Gu , Xin Zhang , Yao Liu . Comprehensive Chemical Experiment: Design, Synthesis, and Photoelectronic Properties Study of Fully Non-Fused Ring Electron Acceptors. University Chemistry, 2025, 40(10): 263-275. doi: 10.12461/PKU.DXHX202412021
-
[17]
Yuanchun Pan , Xinyun Lin , Leyi Yang , Wenya Hu , Dekui Song , Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052
-
[18]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[19]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[20]
Cun WANG , Shaohan XU , Yuqian ZHANG , Yaoyao ZHANG , Tao GONG , Rong WEN , Yuhang LIAO , Yanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427
-
[1]
Metrics
- PDF Downloads(11)
- Abstract views(2643)
- HTML views(90)
Login In
DownLoad: