Citation: SONG Zhong-Qian,  LI Wei-Yan,  BAO Yu,  LIU Zhen-Bang,  SUN Zhong-Hui,  NIU Li. Research Progress of Wearable Self-Powered Electrochemical Sensors[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 769-776. doi: 10.19756/j.issn.0253-3820.221632 shu

Research Progress of Wearable Self-Powered Electrochemical Sensors

  • Corresponding author: LIU Zhen-Bang,  NIU Li, 
  • Received Date: 22 December 2022
    Revised Date: 13 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 22104021, 22204028) and the Yong Talent Project of Guangzhou Association for Science and Technology.

  • As one of the important branches of wearable electronics, wearable chemical sensors can be used to detect and analyze the chemical components in human bodies and their surrounding environments in continuous and real-time manner, exhibiting great potential in health monitoring, medical diagnosis and environmental protection. However, it is still challenging to develop the matched wearable energy supply devices with high energy density and comfortability. To achieve the continuous and real-time electrochemical monitoring, wearable chemical sensors with self-powered characteristics is a possible strategy to solve the above limitations. Hence, this review first introduced the classification and working principle of wearable self-powered chemical sensors, and then summarized the current research and application progress of wearable self-powered chemical sensors. Finally, the challenge and the existing issues of self-powered wearable chemical sensors were discussed. The review provided a reference for the energy supply selection of wearable electronics and the development of new selfpowered sensors.
  • 加载中
    1. [1]

      BARIYA M, NYEIN H Y Y, JAVEY A. Nat. Electron., 2018, 1(3):160-171.

    2. [2]

    3. [3]

      SONG Y, MIN J, YU Y, WANG H, YANG Y, ZHANG H, GAO W. Sci. Adv., 2020, 6(40):eaay9842.

    4. [4]

      NGUYEN J T, CHENG W. Small Struct., 2022, 3(8):2200034.

    5. [5]

      LI W, SONG Z, KONG H, CHEN M, LIU S, BAO Y, MA Y, SUN Z, LIU Z, WANG W, NIU L. Nano Energy, 2022, 104:107935.

    6. [6]

      KANOKPAKA P, CHANG L Y, WANG B C, HUANG T H, SHIH M J, HUNG W S, LAI J Y, HO K C, YEH M H. Nano Energy, 2022, 100:107464.

    7. [7]

      LIU Z, ZHENG K, HU L, LIU J, QIU C, ZHOU H, HUANG H, YANG H, LI M, GU C, XIE S, QIAO L, SUN L. Adv. Mater., 2010, 22(9):999-1003.

    8. [8]

      XU S, QIN Y, XU C, WEI Y, YANG R, WANG Z L. Nat. Nanotechnol., 2010, 5(5):366-373.

    9. [9]

      VIJJAPU M T, SURYA S G, HE J H, SALAMA K N. ACS Appl. Mater. Interfaces, 2021, 13(34):40460-40470.

    10. [10]

      ZHAO Y, LIU L, ZHANG F, DI C, ZHU D. SmartMat, 2021, 2(4):426-445.

    11. [11]

      LI Z, CHEN J, GUO H, FAN X, WEN Z, YEH M H, YU C, CAO X, WANG Z L. Adv. Mater., 2016, 28(15):2983-2991.

    12. [12]

      MENG J, LI H, ZHAO L, LU J, PAN C, ZHANG Y, LI Z. Nano Lett., 2020, 20(7):4968-4974.

    13. [13]

      SU Y, YANG T, ZHAO X, CAI Z, CHEN G, YAO M, CHEN K, BICK M, WANG J, LI S, XIE G, TAI H, DU X, JIANG Y, CHEN J. Nano Energy, 2020, 74:104941.

    14. [14]

      HUANG C, CHEN G, NASHALIAN A, CHEN J. Nanoscale, 2021, 13(4):2065-2081.

    15. [15]

      CUI S, ZHENG Y, ZHANG T, WANG D, ZHOU F, LIU W. Nano Energy, 2018, 49:31-39.

    16. [16]

      LIU S N, YUAN G T, ZHANG Y, XIE L J, SHEN Q Q, LEI H, WEN Z, SUN X H. Adv. Mater. Technol., 2021, 6(12):2100310.

    17. [17]

      WANG D, ZHANG D, YANG Y, MI Q, ZHANG J, YU L. ACS Nano, 2021, 15(2):2911-2919.

    18. [18]

      PARRILLA M, DE WAEL K. Adv. Funct. Mater., 2021, 31(50):2107042.

    19. [19]

      ZHAO Y, LIU X L, MA S X, WANG W J, NING X J, ZHAO L, ZHUANG J. Sens. Actuators, B, 2021, 340:129985.

    20. [20]

      MATHUR A, FAN H, MAHESHWARI V. Mater. Adv., 2021, 2(16):5274-5299.

    21. [21]

      BAG S, DURSTOCK M F. Nano Energy, 2016, 30:542-548.

    22. [22]

      XIANG S, ZHANG N, FAN X. Adv. Fiber Mater., 2021, 3(2):76-106.

    23. [23]

      LIN H, WENG W, REN J, QIU L, ZHANG Z, CHEN P, CHEN X, DENG J, WANG Y, PENG H. Adv. Mater., 2014, 26(8):1217-1222.

    24. [24]

      WU S, LI Z, ZHANG J, WU X, DENG X, LIU Y, ZHOU J, ZHI C, YU X, CHOY W C H, ZHU Z, JEN A K Y. Adv. Mater., 2021, 33(51):2105539.

    25. [25]

      HASHEMI S A, RAMAKRISHNA S, ABERLE A G. Energy Environ. Sci., 2020, 13(3):685-743.

    26. [26]

      ZHANG Q, DENG K, WILKENS L, REITH H, NIELSCH K. Nat. Electron., 2022, 5(6):333-347.

    27. [27]

      KIM J Y, LEE W, KANG Y H, CHO S Y, JANG K S. Carbon, 2018, 133:293-299.

    28. [28]

      ZHANG F, ZANG Y, HUANG D, DI C A, ZHU D. Nat. Commun., 2015, 6(1):8356.

    29. [29]

      ZHENG C, XIANG L, JIN W, SHEN H, ZHAO W, ZHANG F, DI C, ZHU D. Adv. Mater. Technol., 2019, 4(8):1900247.

    30. [30]

      TSAO Y H, HUSAIN R A, LIN Y J, KHAN I, CHEN S W, LIN Z H. Nano Energy, 2019, 62:268-274.

    31. [31]

      WU Z, ZHANG S, LIU Z, MU E, HU Z. Nano Energy, 2022, 91:106692.

    32. [32]

      HOSSEIN-BABAEI F, MASOUMI S, AGHILI S, SHOKRANI M. ACS Appl. Electron. Mater., 2021, 3(1):353-361.

    33. [33]

      JIA Y, JIANG Q, SUN H, LIU P, HU D, PEI Y, LIU W, CRISPIN X, FABIANO S, MA Y, CAO Y. Adv. Mater., 2021, 33(42):2102990.

    34. [34]

      YU Y, HU Z, LIEN S Y, YU Y, GAO P. ACS Appl. Mater. Interfaces, 2022, 14(42):47696-47705.

    35. [35]

      ZHU S, FAN Z, FENG B, SHI R, JIANG Z, PENG Y, GAO J, MIAO L, KOUMOTO K. Energies, 2022, 15(9):3375.

    36. [36]

      NOZARIASBMARZ A, SUAREZ F, DYCUS J H, CABRAL M J, LEBEAU J M, ÖZTÜRK M C, VASHAEE D. Nano Energy, 2020, 67:104265.

    37. [37]

      WANG Z L, SONG J. Science, 2006, 312(5771):242-246.

    38. [38]

      LV F, LIN J, ZHOU Z, HONG Z, WU Y, REN Z, ZHANG Q, DONG S, LUO J, SHI J, CHEN R, LIU B, SU Y, HUANG Y. Nano Energy, 2022, 100:107507.

    39. [39]

      THAKUR P, KOOL A, HOQUE N A, BAGCHI B, KHATUN F, BISWAS P, BRAHMA D, ROY S, BANERJEE S, DAS S. Nano Energy, 2018, 44:456-467.

    40. [40]

      KONG H, SONG Z, LI W, CHEN M, BAO Y, LIU Z, QU D, MA Y, WANG Z, HAN D, NIU L. Nano Energy, 2022, 100:107498.

    41. [41]

      SHIN S H, KIM Y H, LEE M H, JUNG J Y, NAH J. ACS Nano, 2014, 8(3):2766-2773.

    42. [42]

      CAO X, XIONG Y, SUN J, ZHU X, SUN Q, WANG Z L. Adv. Funct. Mater., 2021, 31(33):2102983.

    43. [43]

      YANG F, LI J, LONG Y, ZHANG Z, WANG L, SUI J, DONG Y, WANG Y, TAYLOR R, NI D, CAI W, WANG P, HACKER T, WANG X. Science, 2021, 373(6552):337-342.

    44. [44]

      SUI J, LI J, GU L, SCHMIDT C A, ZHANG Z, SHAO Y, GAZIT E, GILBERT P U P A, WANG X. J. Mater. Chem. B, 2022, 10(36):6958-6964.

    45. [45]

      ZHAO Z, DAI Y, DOU S X, LIANG J. Mater. Today Energy, 2021, 20:100690.

    46. [46]

      ZHOU Z, DU X, ZHANG Z, LUO J, NIU S, SHEN D, WANG Y, YANG H, ZHANG Q, DONG S. Nano Energy, 2021, 82:105709.

    47. [47]

      ZI Y, GUO H, WANG J, WEN Z, LI S, HU C, WANG Z L. Nano Energy, 2017, 31:302-310.

    48. [48]

      HE W, FU X, ZHANG D, ZHANG Q, ZHUO K, YUAN Z, MA R. Nano Energy, 2021, 84:105880.

    49. [49]

      FAN F R, TANG W, WANG Z L. Adv. Mater., 2016, 28(22):4283-4305.

    50. [50]

      CHEN C, WEN Z, WEI A, XIE X, ZHAI N, WEI X, PENG M, LIU Y, SUN X, YEOW J T W. Nano Energy, 2019, 62:442-448.

    51. [51]

      SU Y, WANG J, WANG B, YANG T, YANG B, XIE G, ZHOU Y, ZHANG S, TAI H, CAI Z, CHEN G, JIANG Y, CHEN L Q, CHEN J. ACS Nano, 2020, 14(5):6067-6075.

    52. [52]

      AARYASHREE, SAHOO S, WALKE P, NAYAK S K, ROUT C S, LATE D J. Nano Res., 2021, 14(11):3669-3689.

    53. [53]

      NUNEZ C G, MANJAKKAL L, DAHIYA R. NPJ Flex. Electron., 2019, 3(1):1.

    54. [54]

      SONG Z, LI W, KONG H, BAO Y, WANG N, WANG W, MA Y, HE Y, GAN S, NIU L. Nano Energy, 2022, 92:106759.

    55. [55]

      KHANDELWAL G, RAJ N P M J, KIM S J. Adv. Energy Mater., 2021, 11(33):2101170.

    56. [56]

      HE T, GUO X, LEE C. iScience, 2021, 24(1):101934.

    57. [57]

      CHEN J, WANG Z L. Joule, 2017, 1(3):480-521.

    58. [58]

      UDDIN A S M I, YAQOOB U, CHUNG G S. ACS Appl. Mater. Interfaces, 2016, 8(44):30079-30089.

    59. [59]

      CHANG J, MENG H, LI C, GAO J, CHEN S, HU Q, LI H, FENG L. Adv. Mater. Technol., 2020, 5(5):1901087.

    60. [60]

      WEN Z, CHEN J, YEH M H, GUO H, LI Z, FAN X, ZHANG T, ZHU L, WANG Z L. Nano Energy, 2015, 16:38-46.

    61. [61]

      LIN Y, DENG P, NIE Y, HU Y, XING L, ZHANG Y, XUE X. Nanoscale, 2014, 6(9):4604-4610.

    62. [62]

      ZHU D, FU Y, ZANG W, ZHAO Y, XING L, XUE X. Mater. Lett., 2016, 166:288-291.

    63. [63]

      ZHAO Y, LAI X, DENG P, NIE Y, ZHANG Y, XING L, XUE X. Nanotechnology, 2014, 25(11):115502.

    64. [64]

      FU Y, NIE Y, ZHAO Y, WANG P, XING L, ZHANG Y, XUE X. ACS Appl. Mater. Interfaces, 2015, 7(19):10482-10490.

    65. [65]

      LEE J W, JUNG S, LEE T W, JO J, CHAE H Y, CHOI K, KIM J J, LEE J H, YANG C, BAIK J M. Adv. Energy Mater., 2019, 9(36):1901987.

    66. [66]

      CHEN H, ZHANG M, BO R, BARUGKIN C, ZHENG J, MA Q, HUANG S, HO-BAILLIE A W Y, CATCHPOLE K R, TRICOLI A. Small, 2018, 14(7):1702571.

    67. [67]

      KAKAVELAKIS G, GAGAOUDAKIS E, PETRIDIS K, PETROMICHELAKI V, BINAS V, KIRIAKIDIS G, KYMAKIS E. ACS Sens., 2018, 3(1):135-142.

    68. [68]

      ZANG W, NIE Y, ZHU D, DENG P, XING L, XUE X. J. Phys. Chem. C, 2014, 118(17):9209-9216.

    69. [69]

      KANG K, PARKR I, NA K, LEE J Y. Proceedings IMCS, 2018, 2018:466-467.

    70. [70]

      LIN Z H, ZHU G, ZHOU Y S, YANG Y, BAI P, CHEN J, WANG Z L. Angew. Chem. Int. Ed., 2013, 52(19):5065-5069.

    71. [71]

      WU Y, SU Y, BAI J, ZHU G, ZHANG X, LI Z, XIANG Y, SHI J. J. Nanomater., 2016, 2016:5121572.

    72. [72]

      WANG J, WU Z, PAN L, GAO R, ZHANG B, YANG L, GUO H, LIAO R, WANG Z L. ACS Nano, 2019, 13(2):2587-2598.

    73. [73]

      SELVARAJAN S, ALLURI N R, CHANDRASEKHAR A, KIM S J. Sens. Actuators, B, 2016, 234:395-403.

    74. [74]

      ABISEGAPRIYAN K S, RAJ N P M J, ALLURI N R, CHANDRASEKHAR A, KIM S J. Sens. Actuators, B, 2020, 320:128417.

  • 加载中
    1. [1]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 100020-0. doi: 10.3866/PKU.WHXB202310004

    2. [2]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    3. [3]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    10. [10]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    11. [11]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    12. [12]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    13. [13]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    16. [16]

      Wenxu Liu Feng Han Boxuan Wang Huayi Liu Xiaobin Gu Xin Zhang Yao Liu . Comprehensive Chemical Experiment: Design, Synthesis, and Photoelectronic Properties Study of Fully Non-Fused Ring Electron Acceptors. University Chemistry, 2025, 40(10): 263-275. doi: 10.12461/PKU.DXHX202412021

    17. [17]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    18. [18]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

Metrics
  • PDF Downloads(11)
  • Abstract views(2644)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return