Citation: HU Zhen-Zhen,  LI Xiao-Tong,  LI Xiao-Dong,  ZHANG Hua,  LIU Gui-Feng,  WANG Zhen-Xin. Applications of Peptide Functionalized Gold Nanoparticles in Bioanalysis and Biomedicine[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 681-694. doi: 10.19756/j.issn.0253-3820.221631 shu

Applications of Peptide Functionalized Gold Nanoparticles in Bioanalysis and Biomedicine

  • Corresponding author: LIU Gui-Feng,  WANG Zhen-Xin, 
  • Received Date: 21 December 2022
    Revised Date: 14 February 2023

    Fund Project: Supported by the Jilin Provincial Science and Technology Department (No. 20220203113SF), the National Natural Science Foundation of China (Nos. 52275006, 21974133) and the Wu Jieping Medical Foundation (No. 320.6750.19089-40).

  • The functionalization of gold nanoparticle (GNP) surface with specific ligand is helpful to improve the bioanalysis performance of GNP and realize special application of GNP in biomedicine. Because it is easy to integrate various functions including specific biorecognition and therapeutic function into one sequence, peptides become one of the most common ligands for functionalization of GNP. The peptide functionalized GNPs (GNP@peptides) have been extensively used to build biosensing nanoplatforms with high sensitivity and selectivity for detecting various analytes (such as heavy metal ions, biomarkers, etc.) and novel therapeutic/drug delivery nanosystems with excellent anti-tumor and/or antibacterial capabilities. This review provided an overview of the effect of GNP@peptides on the precision diagnostics and therapy of diseases, and discussesed the current challenges and future prospects of GNP@peptide-based biosensing nanoplatforms and nanomedicines in practical applications.
  • 加载中
    1. [1]

      MIRKIN C A, LETSINGER R L, MUCIC R C, STORHOFF J J. Nature, 1996, 382(6592):607-609.

    2. [2]

      ZHANG Y, ZHANG C, XU C, WANG X, LIU C, WATERHOUSE G I N, WANG Y, YIN H. Talanta, 2019, 200:432-442.

    3. [3]

    4. [4]

      LIU X, ZHANG Q, KNOLL W, LIEDBERG B, WANG Y. Adv. Mater., 2020, 32(37):2000866.

    5. [5]

      LIU Y, BHATTARAI P, DAI Z, CHEN X. Chem. Soc. Rev., 2019, 48(7):2053-2108.

    6. [6]

      ZHOU R, ZHANG M, XI J, LI J, MA R, REN L, BAI Z, QI K, LI X. Nanoscale Res. Lett., 2022, 17(1):68.

    7. [7]

      ZHANG P, CUI Y, ANDERSON C F, ZHANG C, LI Y, WANG R, CUI H. Chem. Soc. Rev., 2018, 47(10):3490-3529.

    8. [8]

      DESALE K, KUCHE K, JAIN S. Biomater. Sci., 2021, 9(4):1153-1188.

    9. [9]

      LI X, WANG J, SUN L, WANG Z. Chem. Commun., 2010, 46(6):988-990.

    10. [10]

      INNOCENTI R, DALLARI C, LENCI E, PAVONE F S, BIANCHINI F, CREDI C, TRABOCCHI A. Bioorg. Chem., 2022, 126:105873.

    11. [11]

      HU J, YUAN X, WANG F, GAO H, LIU X, ZHANG W. Chin. Chem. Lett., 2021, 32(4):1341-1347.

    12. [12]

      MORSHED R A, MUROSKI M E, DAI Q, WEGSCHEID M L, AUFFINGER B, YU D, HAN Y, ZHANG L, WU M, CHENG Y, LESNIAK M S. Mol. Pharm., 2016, 13(6):1843-1854.

    13. [13]

      DERAEDT C, SALMON L, GATARD S, CIGANDA R, HERNANDEZ R, RUIZ J, ASTRUC D. Chem. Commun., 2014, 50(91):14194-14196.

    14. [14]

      TURKEVICH J, STEVENSON P C, HILLIER J. Discuss. Faraday Soc., 1951, 11:55-75.

    15. [15]

      FRENS G. Nat. Phys. Sci., 1973, 241(105):20-22.

    16. [16]

      JANA N R, GEARHEART L, MURPHY C J. J. Phys. Chem. B, 2001, 105(19):4065-4067.

    17. [17]

      LÉVY R, THANH N T K, DOTY R C, HUSSAIN I, NICHOLS R J, SCHIFFRIN D J, BRUST M, FERNIG D G. J. Am. Chem. Soc., 2004, 126(32):10076-10084.

    18. [18]

      OZCELIK S, PRATX G. Nanotechnology, 2020, 31(41):415102.

    19. [19]

      CHIANG T H, HSIAO H H. Talanta, 2023, 253:123913.

    20. [20]

      BEIDERMAN M, ASHKENAZY A, SEGAL E, BARNOY E A, MOTIEI M, SADAN T, SALOMON A, RAHIMIPOUR S, FIXLER D, POPOVTZER R. ACS Appl. Nano Mater., 2020, 3(8):8414-8423.

    21. [21]

      LUO J, CHENG Y, GONG Z W, WU K, ZHOU Y, CHEN H X, GAUTHIER M, CHENG Y Z, LIANG J, ZOU T. Langmuir, 2020, 36(2):600-608.

    22. [22]

      HU B, KONG F, GAO X, JIANG L, LI X, GAO W, XU K, TANG B. Angew. Chem. Int. Ed., 2018, 57(19):5306-5309.

    23. [23]

      GUO W, GAO X, ZHAN R, ZHAO Z, XU K, TANG B. Talanta, 2021, 222:121525.

    24. [24]

      LIU B, LI J, ZHOU P, PAN W, LI N, TANG B. Anal. Chem., 2021, 93(50):16880-16886.

    25. [25]

      BARTCZAK D, KANARAS A G. Langmuir, 2011, 27(16):10119-10123.

    26. [26]

      RUFF J, HASSAN N, MORALES-ZAVALA F, STEITZ J, ARAYA E, KOGAN M J, SIMON U. J. Mater. Chem. B, 2018, 6(16):2432-2443.

    27. [27]

      LIMON D, VILA S, HERRERA-OLIVAS A, VERA R, BADIA J, BALDOMA L, PLANAS M, FELIU L, PEREZ-GARCIA L. Colloids Surf., B, 2021, 197:111384.

    28. [28]

      LEMOINE P, DOOLEY C, MORELLI A, HARRISON E, DIXON D. Appl. Surf. Sci., 2022, 574:151386.

    29. [29]

      YU Y, LUO Z, YU Y, LEE J Y, XIE J. ACS Nano, 2012, 6(9):7920-7927.

    30. [30]

      ZHANG X D, CHEN J, LUO Z, WU D, SHEN X, SONG S S, SUN Y M, LIU P X, ZHAO J, HUO S, FAN S, FAN F, LIANG X J, XIE J. Adv. Healthcare Mater., 2014, 3(1):133-141.

    31. [31]

      ZHANG C, GAO X, CHEN W, HE M, YU Y, GAO G, SUN T. iScience, 2022, 25(10):105022.

    32. [32]

      SI S, KOTAL A, MANDAL T K. J. Phys. Chem. C, 2007, 111(3):1248-1255.

    33. [33]

      LI W, NIE Z, HE K, XU X, LI Y, HUANG Y, YAO S. Chem. Commun., 2011, 47(15):4412-4414.

    34. [34]

      BARTL J, REINKE L, KOCH M, KUBIK S. Chem. Commun., 2020, 56(72):10457-10460.

    35. [35]

      KORKMAZ N, HWANG C, KESSLER K K, SILINA Y E, MÜLLER L, PARK J. Talanta, 2021, 232:122439.

    36. [36]

      LI X Y, ZHANG M M, ZHOU X D, HU J M. Anal. Biochem., 2021, 631:114369.

    37. [37]

      ZHANG W, XI J, ZHANG Y, SU Z, WEI G. Arabian J. Chem., 2020, 13(1):1406-1414.

    38. [38]

      FENG S, SHI R, XU P, BHAMORE J R, BAL J, BAEK S H, PARK C Y, PARK J P, PARK T J. New J. Chem., 2020, 44(37):15828-15835.

    39. [39]

      WU X, YIN J, LIU J, GU Y, WANG S, WANG J. Analyst, 2020, 145(22):7234-7241.

    40. [40]

      WU A, DING H, ZHANG W, RAO H, WANG L, CHEN Y, LU C, WANG X. Food Chem., 2021, 363:130325.

    41. [41]

      FENG T, GAO S, WANG K. Acta Chim. Sin., 2019, 77(5):422-426.

    42. [42]

      KAKKAR S, CHAUHAN S, BALA R, BHARTI R, KUMAR V, ROHIT M, BHALLA V. Microchim. Acta, 2022, 189(10):366.

    43. [43]

      WANG Z, LÉVY R, FERNIG D G, BRUST M. J. Am. Chem. Soc., 2006, 128(7):2214-2215.

    44. [44]

      MAO X X, LI Y F, HAN P, WANG X H, YANG S Q, ZHANG F, GONG X Q, CAO Y. Sens. Actuators, B, 2018, 267:336- 341.

    45. [45]

      LOYNACHAN C N, SOLEIMANY A P, DUDANI J S, LIN Y, NAJER A, BEKDEMIR A, CHEN Q, BHATIA S N, STEVENS M M. Nat. Nanotechnol., 2019, 14(9):883-890.

    46. [46]

      HE M Q, CHEN S, YAO K, MENG J, WANG K, YU Y L, WANG J H. Anal. Chem., 2020, 92(1):1395-1401.

    47. [47]

      LI X, ZHU Q, XU F, JIAN M, YAO C, ZHANG H, WANG Z. Anal. Biochem., 2022, 648:114671.

    48. [48]

      CREYER M N, JIN Z, MOORE C, YIM W, ZHOU J, JOKERST J V. ACS Appl. Mater. Interfaces, 2021, 13(38):45236- 45243.

    49. [49]

      JIN Z C, MANTRI Y, RETOUT M, CHENG Y, ZHOU J J, JORNS A, FAJTOVA P, YIM W, MOORE C, XU M, CREYER M N, BORUM R M, ZHOU J C, WU Z H, HE T Y, PENNY W F, O'DONOGHUE A J, JOKERST J V. Angew. Chem. Int. Ed., 2022, 61(9):e202112995.

    50. [50]

      JIN Z, YEUNG J, ZHOU J, CHENG Y, LI Y, MANTRI Y, HE T, YIM W, XU M, WU Z, FAJTOVA P, CREYER M N, MOORE C, FU L, PENNY W F, O'DONOGHUE A J, JOKERST J V. Chem. Mater., 2022, 34(3):1259-1268.

    51. [51]

      JIN Z, LING C, LI Y, ZHOU J, LI K, YIM W, YEUNG J, CHANG Y C, HE T, CHENG Y, FAJTOVÁ P, RETOUT M, O'DONOGHUE A J, JOKERST J V. Nano Lett., 2022, 22(22):8932-8940.

    52. [52]

      GARLAND G D, HARVEY R F, MULRONEY T E, MONTI M, FULLER S, HAIGH R, GERBER P P, BARER M R, MATHESON N J, WILLIS A E. Biochem. J., 2022, 479(8):901-920.

    53. [53]

      CHEN Q, ZHANG L, FENG Y, SHI F, WANG Y, WANG P, LIU L. J. Mater. Chem. B, 2018, 6(46):7643-7651.

    54. [54]

      XIONG L H, HUANG S, HUANG Y, YIN F, YANG F, ZHANG Q, CHENG J, ZHANG R, HE X. ACS Appl. Mater. Interfaces, 2020, 12(11):12525-12532.

    55. [55]

      LEE J I, JANG S C, CHUNG J, CHOI W K, HONG C, AHN G R, KIM S H, LEE B Y, CHUNG W J. Sens. Actuators, B, 2021, 327:128894.

    56. [56]

      ZHU Q, ZHOU X. J. Hazard. Mater., 2022, 425:127923.

    57. [57]

      GAO L, LIU M, MA G, WANG Y, ZHAO L, YUAN Q, GAO F, LIU R, ZHAI J, CHAI Z, ZHAO Y, GAO X. ACS Nano, 2015, 9(11):10979-10990.

    58. [58]

      FENG J, HUANG P, SHI S, DENG K Y, WU F Y. Anal. Chim. Acta, 2017, 967:64-69.

    59. [59]

      FU M, LI L, YANG D, TU Y, YAN J. Spectrochim. Acta, Part A, 2022, 279:121450.

    60. [60]

      LI Y, DENG Y, ZHOU X, HU J. Talanta, 2018, 179:742-752.

    61. [61]

      XUE F, QU F, HAN W, XIA L, YOU J. Anal. Chim. Acta, 2019, 1046:170-178.

    62. [62]

      WU Y, GAO Y, DU J. Talanta, 2019, 197:599-604.

    63. [63]

      WANG M K, LIU Y, SU D D, CHEN J Y, SU X G. Sens. Actuators, B, 2019, 290:512-519.

    64. [64]

      WANG H, DA L, YANG L, CHU S, YANG F, YU S, JIANG C. J. Hazard. Mater., 2020, 392:122506.

    65. [65]

      XIE M, WANG Y, LIU L, WANG X, JIANG H. J. Colloid Interface Sci., 2022, 614:502-510.

    66. [66]

      BHAMORE J R, GUL A R, CHAE W S, KIM K W, LEE J S, PARK H, KAILASA S K, PARK T J. Sens. Actuators, B, 2020, 322:128603.

    67. [67]

      QI S, SAAD AL-MASHRIQI H, SALAH A, ZHAI H. Microchem. J., 2022, 175:107163.

    68. [68]

      QU F, WANG Z, LI C, JIANG D F, ZHAO X E. Sens. Actuators, B, 2022, 359:131610.

    69. [69]

      QIAN D, WANG Z, XIAO Z, FANG C J. Inorg. Chem. Commun., 2021, 126:108471.

    70. [70]

      YU F, CAO Z, HE S, XIANG H, ZHAO G, YANG L, LIU H. Chem. Commun., 2022, 58(6):811-814.

    71. [71]

      WANG M K, WANG L, LIU Q, SU X G. Sens. Actuators, B, 2018, 256:691-698.

    72. [72]

      ZHANG D, MENG Y, ZHANG C. Chem. Commun., 2020, 56(2):213-216.

    73. [73]

      HE S, KYAW Y M E, TAN E K M, BEKALE L, KANG M W C, KIM S S Y, TAN I, LAM K P, KAH J C Y. Anal. Chem., 2018, 90(10):6071-6080.

    74. [74]

      HUANG X, YIN Y, WU M, ZAN W, YANG Q. Chin. Chem. Lett., 2019, 30(6):1335-1340.

    75. [75]

      SLOAN-DENNISON S, BEVINS M K R, SCARPITTI B T, SAUVÉ V K, SCHULTZ Z D. Analyst, 2019, 144(18):5538- 5546.

    76. [76]

      ZHAO C, QIU L, LV P, HAN A, FANG G, LIU J, WANG S. Analyst, 2019, 144(4):1275-1281.

    77. [77]

      JIANG Q Y, CUI X, SUN Y, MAO Z, WANG J, CHEN F, WANG J, CAO Y. Biosens. Bioelectron., 2021, 192:113539.

    78. [78]

      SUN Y, WANG Y, LU W, LIU C, GE S, ZHOU X, BI C, CAO X. J. Mater. Chem. B, 2021, 9(2):381-391.

    79. [79]

      ZHU W, WANG C Y, HU J M, SHEN A G. Anal. Chem., 2021, 93(11):4876-4883.

    80. [80]

      YE Y, GE Y, ZHANG Q, YUAN M, CAI Y, LI K, LI Y, XIE R, XU C, JIANG D, QU J, LIU X, WANG Y. Adv. Sci., 2022, 9(12):2104738.

    81. [81]

      LIU L, CHU H, YANG J, SUN Y, MA P, SONG D. Biosens. Bioelectron., 2022, 212:114389.

    82. [82]

      ZHONG Q, ZHANG K, HUANG X, LU Y, ZHAO J, HE Y, LIU B. Biosens. Bioelectron., 2022, 207:114194.

    83. [83]

      XING T, QIAN Q, YE H, WANG Z, JIN Y, ZHANG N, WANG M, ZHOU Y, GAO X, WU L. Biosens. Bioelectron., 2022, 212:114430.

    84. [84]

      WANG J, DONG B, CHEN B, JIANG Z, SONG H. Dalton Trans., 2012, 41(36):11134-11144.

    85. [85]

      ZHAO X, YANG C X, CHEN L G, YAN X P. Nat. Commun., 2017, 8(1):14998.

    86. [86]

      ALI M R K, WU Y, TANG Y, XIAO H P, CHEN K C, HAN T G, FANG N, WU R H, EL-SAYED M A. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(28):E5655-E5663.

    87. [87]

      HA J H, SHIN H H, CHOI H W, LIM J H, MO S J, AHRBERG C D, LEE J M, CHUNG B G. Lab Chip, 2020, 20(18):3354-3364.

    88. [88]

      TAN H, HUANG Y, XU J, CHEN B, ZHANG P, YE Z, LIANG S, XIAO L, LIU Z. Theranostics, 2017, 7(12):3168-3178.

    89. [89]

      WU L, LIN B, YANG H, CHEN J, MAO Z, WANG W, GAO C. Acta Biomater., 2019, 86:363-372.

    90. [90]

      JIN X, YANG H, MAO Z, WANG B. J. Colloid Interface Sci., 2021, 601:714-726.

    91. [91]

      HA M, NAM S H, SIM K, CHONG S E, KIM J, KIM Y, LEE Y, NAM J M. Nano Lett., 2021, 21(1):731-739.

    92. [92]

      GONCALVES D P N, PARK D M, SCHMIDT T L, WERNER C. Biomater. Sci., 2018, 6(5):1140-1146.

    93. [93]

      SANKARI S S, URADE R, CHIU C C, WANG L F. Pharmaceutics, 2022, 14(9):1939.

    94. [94]

      JABIR M S, ABOOD N A, JAWAD M H, ÖZTÜRK K, KADHIM H, ALBUKHATY S, AL-SHAMMARI A, ALMALKI F A, ALBAQAMI J, SULAIMAN G M. Mater. Tech., 2022, 37(14):3152-3166.

    95. [95]

      BIAN Z, YAN J, WANG S, LI Y, GUO Y, MA B, GUO H, LEI Z, YIN C, ZHOU Y, LIU M, TAO K, HOU P, HE W. Theranostics, 2018, 8(19):5320-5335.

    96. [96]

      YIN X, YANG B, CHEN B, HE M, HU B. Anal. Chem., 2019, 91(16):10596-10603.

    97. [97]

      HE K, ZHU J, GONG L, TAN Y, CHEN H, LIANG H, HUANG B, LIU J. Nano Res., 2021, 14(4):1087-1094.

    98. [98]

      FARHANGI S, KARIMI E, KHAJEH K, HOSSEINKHANI S, JAVAN M. Nanomed.-Nanotechnol. Biol. Med., 2023, 47:102609.

    99. [99]

      LIU B, QIAO G, HAN Y, SHEN E, ALFRANCA G, TAN H, WANG L, PAN S, MA L, XIONG W, LIU Y, CUI D. Acta Biomater., 2020, 117:361-373.

    100. [100]

      LIU Z, XIE F, XIE J, CHEN J, LI Y, LIN Q, LUO F, YAN J. Drug Delivery, 2021, 28(1):1769-1784.

    101. [101]

      HOU G H, QIAN J M, XU W J, SUN T T, WANG J L, WANG Y P, SUO A L. Colloids Surf., B, 2019, 181:602-611.

    102. [102]

      HUANG S H, PENG S, WANG Q Y, HU Q H, ZHANG R Q, LIU L, LIU Q, LIN J, ZHOU Q H. Colloids Surf., B, 2021, 207:112014.

    103. [103]

      LIU X, LIU J, XU S, LI X, WANG Z, GAO X, TANG B, XU K. ACS Appl. Mater. Interfaces, 2023, 15(2):2529-2537.

    104. [104]

      YE L, CHEN Y, MAO J, LEI X, YANG Q, CUI C. J. Exp. Clin. Cancer Res., 2021, 40(1):303.

    105. [105]

      PENG J, WANG R, SUN W, HUANG M, WANG R, LI Y, WANG P, SUN G, XIE S. Biomater. Sci., 2021, 9(19):6528- 6541.

    106. [106]

      TANG W, HAN L, LU X, WANG Z, LIU F, LI Y, LIU S, LIU S, TIAN R, LIU J, DING B. ACS Appl. Mater. Interfaces, 2021, 13(18):20974-20981.

    107. [107]

      ZHANG M, LIN J, JIN J, YU W, QI Y, TAO H. Front. Pharmacol., 2021, 12:799588.

    108. [108]

      CHAKABORTY K, BISWAS A, MISHRA S, MALLICK A M, TRIPATHI A, JAN S, ROY R S. ACS Appl. Bio Mater., 2023, 6(2):458-472.

    109. [109]

      TIAN D, QIN F, ZHAO H, ZHANG C, WANG H, LIU N, AI Y. Colloids Surf., B, 2021, 202:111681.

    110. [110]

      VUKOMANOVIC M, CENDRA M D, BAELO A, TORRENTS E. Colloids Surf., B, 2021, 208:112083.

    111. [111]

      ZHENG Y K, LIU W W, CHEN Y, LI C M, JIANG H, WANG X M. J. Colloid Interface Sci., 2019, 546:1-10.

    112. [112]

      SANKARI S S, DAHMS H U, TSAI M F, LO Y L, WANG L F. Colloids Surf., B, 2021, 208:112117.

    113. [113]

      SHENG G, NI J, XING K, FAN L, DAI T, YU J, DAI X, CHEN R, WU J, LI N, CHEN J, MAO Z, LI L. Colloid Interface Sci. Commun., 2021, 41:100379.

    114. [114]

      XU X Y, DING Y J, HADIANAMREI R, LV S W, YOU R R, PAN F, ZHANG P, WANG N, ZHAO X B. Colloids Surf., B, 2022, 220:112887.

    115. [115]

      DONG X, YE J, CHEN Y, TANZIELA T, JIANG H, WANG X. Chem. Eng. J., 2022, 432:134061.

  • 加载中
    1. [1]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    2. [2]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    5. [5]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    6. [6]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    7. [7]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    9. [9]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    11. [11]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    12. [12]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    13. [13]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    14. [14]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    15. [15]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    16. [16]

      Ling WANGWeipeng YANZhuoyi ZHENGSihan ZHUMingxian GONGXiangyu MA . Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2441-2454. doi: 10.11862/CJIC.20250264

    17. [17]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    18. [18]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

Metrics
  • PDF Downloads(9)
  • Abstract views(3498)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return