Citation: ZHANG Ming-Rui,  HAN Xiao-Jun. Construction of Phospholipid Analogue Vesicle and Study of Its Artificial Cell Functions[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 884-891. doi: 10.19756/j.issn.0253-3820.221630 shu

Construction of Phospholipid Analogue Vesicle and Study of Its Artificial Cell Functions

  • Corresponding author: HAN Xiao-Jun, hanxiaojun@hit.edu.cn
  • Received Date: 21 December 2022
    Revised Date: 15 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (Nos. 21929401, 22174031, 22111540252), the Natural Science Foundation of Heilongjiang Province (No. ZD2022B001) and the Heilongjiang Touyan Team Project (No. HITTY- 20190034).

  • Phospholipids, as natural components of cell membrane systems, are widely used to construct artificial cells. However, the synthesis and purification of natural phospholipids are complicated. Chemically synthesized phospholipid analogues are structurally similar to natural phospholipids, so they can be used to mimic phospholipids to construct artificial cells. In this work, a novel phospholipid analogue 2 was synthesized by the azide-alkyne click reaction, which could form vesicles. The membrane was fluid, which indicated the vesicles could mimic cell membranes. The vesicles were capable to encapsulate small molecule of calcein and macromolecule of rhodamine B isothiocyanate-dextran. Melittins were embedded in the membrane to form pores, which allowed the transmembrane transport of calcein. When the concentrations of melittin were 1.0, 2.0, 3.0, 4.0 and 5.0 μg/mL, the transmembrane diffusion coefficients of calcein were 0.33, 0.46, 0.70, 1.37 and 1.91 μm2/s, respectively. Glucose oxidase and horse radish peroxidase were encapsulated into vesicles to fabricate artificial cells, which mimicked the cell metabolism function. Amplex red was converted into resorufin via enzyme cascade reactions. The synthesized phospholipid analogues could provide new building blocks for artificial cells.
  • 加载中
    1. [1]

      WANG H, ZHU X, TSARKOVA L, PICH A, MÖLLER M. ACS Nano, 2011, 5(5):3937-3942.

    2. [2]

      LI M, HARBRON R L, WEAVER J V M, BINKS B P, MANN S. Nat. Chem., 2013, 5(6):529-536.

    3. [3]

      LI M, HUANG X, MANN S. Small, 2014, 10(16):3291-3298.

    4. [4]

      MORIGAKI K, WALDE P. Curr. Opin. Colloid Interface Sci., 2007, 12(2):75-80.

    5. [5]

      MANSY S S, SZOSTAK J W. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(36):13351-13355.

    6. [6]

      HANCZYC M M, FUJIKAWA S M, SZOSTAK J W. Science, 2003, 302(5645):618-622.

    7. [7]

      DISCHER D E, AHMED F. Annu. Rev. Biomed. Eng., 2006, 8(1):323-341.

    8. [8]

      MAI Y, EISENBERG A. Chem. Soc. Rev., 2012, 41(18):5969-5985.

    9. [9]

      DISCHER B M, WON Y Y, EGE D S, LEE J C M, BATES F S, DISCHER D E, HAMMER D A. Science, 1999, 284(5417):1143-1146.

    10. [10]

      GHELLAB S E, LI Q C, FUHS T, BI H M, HAN X J. Colloids Surf., B, 2017, 160:697-703.

    11. [11]

      LI Q C, WANG X J, MA S H, ZHANG Y, HAN X J. Colloids Surf., B, 2016, 147:368-375.

    12. [12]

      ZHU C, LI Q, DONG M, HAN X. Anal. Chem., 2018, 90(24):14363-14367.

    13. [13]

      LI C, LI Q, WANG Z, HAN X. Anal. Chem., 2020, 92(8):6060-6064.

    14. [14]

      WANG X, DU H, WANG Z, MU W, HAN X J. Adv. Mater., 2021, 33(6):e2002635.

    15. [15]

      ZHANG Y M, ROCK C O. Nat. Rev. Microbiol., 2008, 6(3):222-233.

    16. [16]

      YAO J, ROCK C O. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2013, 1831(3):495-502.

    17. [17]

      BREA R J, COLE C M, DEVARAJ N K. Angew. Chem. Int. Ed., 2014, 53(51):14102-14105.

    18. [18]

      BUDIN I, DEVARAJ N K. J. Am. Chem. Soc., 2012, 134(2):751-753.

    19. [19]

      BHATTACHARYA A, BREA R J, NIEDERHOLTMEYER H, DEVARAJ N K. Nat. Commun., 2019, 10(1):300.

    20. [20]

      PODOLSKY K A, DEVARAJ N K. Nat. Rev. Chem., 2021, 5(10):676-694.

    21. [21]

      KONETSKI D, BARANEK A, MAVILA S, ZHANG X, BOWMAN C N. Soft Matter, 2018, 14(37):7645-7652.

    22. [22]

      TAKAKURA K, TOYOTA T, SUGAWARA T. J. Am. Chem. Soc., 2003, 125(27):8134-8140.

    23. [23]

      MATSUO M, HIRATA Y, KURIHARA K, TOYOTA T, MIURA T, SUZUKI K, SUGAWARA T. Micromachines, 2020, 11(6):606.

    24. [24]

      BREA R J, COLE C M, LYDA B R, YE L, PROSSER R S, SUNAHARA R K, DEVARAJ N K. J. Am. Chem. Soc., 2017, 139(10):3607-3610.

    25. [25]

      AHOU A, MARTIGNAGO D, ALABDALLAH O, TAVAZZA R, STANO P, MACONE A, PIVATO M, MASI A, RAMBLA J L, VERA-SIRERA F, ANGELINI R, FEDERICO R, TAVLADORAKI P. J. Exp. Bot., 2014, 65(6):1585-1603.

    26. [26]

      ZHANG Y, CHEN Y, YANG X, HE X, LI M, LIU S, WANG K, LIU J, MANN S. J. Am. Chem. Soc., 2021, 143(7):2866- 2874.

    27. [27]

      ELBAUM-GARFINKLE S, KIM Y, SZCZEPANIAK K, CHEN C C H, ECKMANN C R, MYONG S, BRANGWYNNE C P. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(23):7189-7194.

    28. [28]

      DENG N N, YELLESWARAPU M, HUCK W T S. J. Am. Chem. Soc., 2016, 138(24):7584-7591.

    29. [29]

      SONG L, HOBAUGH M R, SHUSTAK C, CHELEY S, BAYLEY H, GOUAUX J E. Science, 1996, 274(5294):1859-1865.

    30. [30]

      NOIREAUX V, LIBCHABER A. Proc. Natl. Acad. Sci. U. S. A., 2015, 101(51):17669-17674.

    31. [31]

      LI Q, HAN X. iScience, 2018, 8:138-147.

    32. [32]

      LI S, WANG X, MU W, HAN X. Anal. Chem., 2019, 91(10):6859-6864.

    33. [33]

      WANG X, TIAN L, DU H, LI M, MU W, DRINKWATER B W, HAN X, MANN S. Chem. Sci., 2019, 10(41):9446-9453.

    34. [34]

      YANG B, LI S, MU W, WANG Z, HAN X. Small, 2022:e2201305.

  • 加载中
    1. [1]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    2. [2]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    3. [3]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    4. [4]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    7. [7]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    8. [8]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    9. [9]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    10. [10]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    11. [11]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    12. [12]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    13. [13]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    14. [14]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    15. [15]

      Huicheng Yang Qianhong Sun . Practice of Ideological and Political Education in Organic Chemistry Laboratory Courses under the OBE Framework: A Case Study of Berberine Extraction. University Chemistry, 2025, 40(5): 276-282. doi: 10.12461/PKU.DXHX202410091

    16. [16]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    17. [17]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    20. [20]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

Metrics
  • PDF Downloads(12)
  • Abstract views(4030)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return