Citation: HONG Biao,  GUO Xin-Yue,  ZHANG Ying,  ZHANG Jia,  WU Zheng-Yan. Study on Catalase-Mimicking Activity of Prussian Blue Analogue Nanozyme for Rapid Detection of Glyphosate[J]. Chinese Journal of Analytical Chemistry, ;2023, 51(5): 874-883. doi: 10.19756/j.issn.0253-3820.221629 shu

Study on Catalase-Mimicking Activity of Prussian Blue Analogue Nanozyme for Rapid Detection of Glyphosate

  • Corresponding author: ZHANG Jia,  WU Zheng-Yan, 
  • Received Date: 21 December 2022
    Revised Date: 27 February 2023

    Fund Project: Supported by the National Natural Science Foundation of China (No. 22278414).

  • Chromium-doped Prussian blue nanozyme (CrPBzyme) was prepared at room temperature with citric acid as stabilizer. Under weakly alkaline condition, CrPBzyme could catalyze the decomposition of H2O2 to O2, displaying appreciable catalase (CAT)-mimicking activity. The CAT-mimicking activity of CrPBzyme had differentiated changes after mixing with different transition metal ions, among which Cu2+ ion greatly enhanced the CAT-mimicking activity, causing the more rapid decomposition of H2O2 and dramatic increase of dissolved oxygen (DO) level. When glyphosate was added in the CrPBzyme/Cu2+ mixture, the CAT-mimicking activity of the mixture decreased owing to the strong interaction of glyphosate and Cu2+ ion, resulting in the decelerated decomposition of H2O2 and downward shift of DO level. On the basis of the CAT-mimicking activity of CrPBzyme and the activity modulation mediated by Cu2+, a novel sensor for rapid and quantitative determination of glyphosate was developed by using DO level as output signal, achieving a detection range of 1.0-16.7 μmol/L and a limit of detection of 1.0 μmol/L (3σ). The recoveries of glyphosate in real samples (water and soil) were 89.8%-99.2%, suggesting the practical potential of this method for detection of glyphosate.
  • 加载中
    1. [1]

      SIMONETTI E, CARTAUD G, QUINN R M, MAROTTI I, DINELLI G. J. AOAC Int., 2015, 98(6):1760-1768.

    2. [2]

      QIAO C, WANG C, PANG R, TIAN F, HAN L, GUO L, LUO J, LI J, PANG T, XIE H, FANG J. Ecotoxicol. Environ. Saf., 2020, 206:111209.

    3. [3]

      DUKE S O, POWLES S B. Pest. Manag. Sci., 2008, 64(4):319-325.

    4. [4]

      GILL J P K, SETHI N, MOHAN A. Environ. Chem. Lett, 2017, 15(1):85-100.

    5. [5]

      WILLIAMS G M, AARDEMA M, ACQUAVELLA J, BERRY S C, BRUSICK D, BURNS M M, DE CAMARGO J L V, GARABRANT D, GREIM H A, KIER L D, KIRKLAND D J, MARSH G, SOLOMON K R, SORAHAN T, ROBERTS A, WEED D L. Crit. Rev. Toxicol., 2016, 46(sup1):3-20.

    6. [6]

    7. [7]

      PAREJA L, JESÚS F, HEINZEN H, HERNANDO M D, RAJSKI Ł, FERNÁNDEZ-ALBA A R. Anal. Methods, 2019, 11(16):2123-2128.

    8. [8]

      CONNOLLY A, KOSLITZ S, BURY D, BRÜNING T, CONRAD A, KOLOSSA-GEHRING M, COGGINS M A, KOCH H M. J. Chromatogr. B, 2020, 1158:122348.

    9. [9]

      WANG D, LIN B, CAO Y, GUO M, YU Y. J. Agric. Food Chem., 2016, 64(30):6042-6050.

    10. [10]

      CHERGUI S, RHILI K, ABREGO-MARTINEZ J C, JIMÉNEZ G C, SIAJ M. ACS Agric. Sci. Technol., 2021, 1(6):655-663.

    11. [11]

      WANG X, SAKINATI M, YANG Y, MA Y, YANG M, LUO H, HOU C, HUO D. Anal. Methods, 2020, 12(4):520-527.

    12. [12]

      YAN X, SONG Y, ZHU C, LI H, DU D, SU X, LIN Y. Anal. Chem., 2018, 90(4):2618-2624.

    13. [13]

    14. [14]

      WU J, WANG X, WANG Q, LOU Z, LI S, ZHU Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4):1004-1076.

    15. [15]

      HUANG Y, REN J, QU X. Chem. Rev., 2019, 119(6):4357-4412.

    16. [16]

      ZHANG R, YAN X, FAN K. Acc. Mater. Res., 2021, 2(7):534-547.

    17. [17]

    18. [18]

      LUO D, HUANG X, LIU B, ZOU W, WU Y. J. Agric. Food Chem., 2021, 69(11):3537-3547.

    19. [19]

      TAI S, QIAN Z, REN H, BARIMAH A O, PENG C, WEI X. Anal. Chim. Acta, 2022, 1222:339992.

    20. [20]

      ZHANG W, HU S, YIN J J, HE W, LU W, MA M, GU N, ZHANG Y. J. Am. Chem. Soc., 2016, 138(18):5860-5865.

    21. [21]

    22. [22]

      SHOKOUHIMEHR M, SOEHNLEN E S, KHITRIN A, BASU S, HUANG S D. Inorg. Chem. Commun., 2010, 13(1):58-61.

    23. [23]

      ZHU W, LIU K, SUN X, WANG X, LI Y, CHENG L, LIU Z. ACS Appl. Mater. Interfaces, 2015, 7(21):11575-11582.

    24. [24]

      ZHANG J, YIN H, WANG H, XU L, SAMUEL B, LIU F, CHEN H. Environ. Sci. Pollut. Res., 2018, 25(17):16913-16921.

    25. [25]

      UOGINTĖ I, LUJANIENĖ G, MAŽEIKA K. J. Hazard. Mater., 2019, 369:226-235.

    26. [26]

      VÁZQUEZ-GONZÁLEZ M, TORRENTE-RODRÍGUEZ R M, KOZELL A, LIAO W C, CECCONELLO A, CAMPUZANO S, PINGARRÓN J M, WILLNER I. Nano Lett., 2017, 17(8):4958-4963.

    27. [27]

      HUANG B, LIU Y, LU Z, SHEN M, ZHOU J, REN J, LI X, LIAO S. ACS Sustainable Chem. Eng., 2019, 7(19):16659-16667.

    28. [28]

      SHOU P, YU Z, WU Y, FENG Q, ZHOU B, XING J, LIU C, TU J, AKAKURU O U, YE Z, ZHANG X, LU Z, ZHANG L, WU A. Adv. Healthcare Mater., 2020, 9(1):1900948.

    29. [29]

      KANDANAPITIYE M S, WANG F J, VALLEY B, GUNATHILAKE C, JARONIEC M, HUANG S D. Inorg. Chem., 2015, 54(4):1212-1214.

    30. [30]

      SIMONOV A, DE BAERDEMAEKER T, BOSTRÖM H L B, RÍOS GÓMEZ M L, GRAY H J, CHERNYSHOV D, BOSAK A, BÜRGI H B, GOODWIN A L. Nature, 2020, 578(7794):256-260.

    31. [31]

      SUN F, YANG L, LI S, WANG Y, WANG L, LI P, YE F, FU Y. J. Agric. Food Chem., 2021, 69(43):12661-12673.

    32. [32]

    33. [33]

      YANG Y, GHALANDARI B, LIN L, SANG X, SU W, DIVSALAR A, DING X. Food Chem., 2022, 367:130617.

    34. [34]

      WANG L, BI Y, GAO J, LI Y, DING H, DING L. RSC Adv., 2016, 6(89):85820-85828.

  • 加载中
    1. [1]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    2. [2]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    3. [3]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    4. [4]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    5. [5]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    10. [10]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    11. [11]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    12. [12]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    14. [14]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    15. [15]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    16. [16]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    17. [17]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(13)
  • Abstract views(3296)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return